Spaces:
Running
Running
File size: 13,668 Bytes
176edce 1e367e3 176edce 80e38a2 e48aa5a 15cc8b5 80e38a2 b2f5030 1e367e3 176edce 1e367e3 343fdaf 176edce 343fdaf 1e367e3 80e38a2 1e367e3 80e38a2 343fdaf 80e38a2 1e367e3 176edce 0399de8 176edce 0399de8 343fdaf 80e38a2 1e367e3 80e38a2 343fdaf 80e38a2 b2f5030 80e38a2 176edce 343fdaf 80e38a2 1e367e3 80e38a2 1e367e3 f09c591 1e367e3 f09c591 80e38a2 3ec2621 7b9b23e 80e38a2 0399de8 80e38a2 0399de8 80e38a2 1e367e3 80e38a2 f09c591 80e38a2 3ec2621 80e38a2 1e367e3 80e38a2 1e367e3 80e38a2 0399de8 1e367e3 0399de8 1e367e3 0399de8 80e38a2 1e367e3 80e38a2 0399de8 b2f5030 0399de8 80e38a2 1e367e3 0399de8 1e367e3 0399de8 80e38a2 0399de8 80e38a2 0399de8 1e367e3 80e38a2 1e367e3 80e38a2 0399de8 1e367e3 80e38a2 1e367e3 819fc44 0399de8 819fc44 1e367e3 819fc44 1e367e3 0399de8 1e367e3 0399de8 1e367e3 0399de8 1e367e3 819fc44 1e367e3 819fc44 1e367e3 819fc44 1e367e3 819fc44 1e367e3 3ec2621 343fdaf 1e367e3 0399de8 1e367e3 0399de8 1e367e3 0399de8 1e367e3 0399de8 1e367e3 0399de8 1e367e3 0399de8 80e38a2 1e367e3 80e38a2 f8cac3e 1e367e3 80e38a2 1e367e3 80e38a2 0399de8 1e367e3 0399de8 80e38a2 1e367e3 819fc44 1e367e3 819fc44 0399de8 1e367e3 3ec2621 343fdaf f09c591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import os
import re
import time
from os import path
import tempfile
import uuid
import base64
import mimetypes
import json
import io
import random
import string
import torch
from PIL import Image
from transformers import pipeline
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
# Diffusers
import gradio as gr
from diffusers import FluxPipeline
# (Internal) text-modification library
from google import genai
from google.genai import types
#######################################
# 0. Environment & Translation Pipeline
#######################################
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
CACHE_PATH = path.join(BASE_DIR, "models")
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
os.environ["HF_HUB_CACHE"] = CACHE_PATH
os.environ["HF_HOME"] = CACHE_PATH
# Translation (Korean -> English), CPU only
translator = pipeline(
task="translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=-1 # force CPU
)
def maybe_translate_to_english(text: str) -> str:
"""
If the prompt contains any Korean characters, translate to English.
Otherwise, return as-is.
"""
if re.search("[가-힣]", text):
translated = translator(text)[0]["translation_text"]
print(f"[TRANSLATE] Detected Korean -> '{text}' -> '{translated}'")
return translated
return text
# Simple Timer Class
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"[TIMER] {self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s")
#######################################
# 1. Load FLUX Pipeline
#######################################
if not path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
#######################################
# 2. Internal Text Modification Functions
#######################################
def save_binary_file(file_name, data):
with open(file_name, "wb") as f:
f.write(data)
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
"""
Internally modifies text within an image, returning a new image path.
(Screen instructions do not mention 'Google'.)
"""
api_key = os.getenv("GAPI_TOKEN", None)
if not api_key:
raise ValueError(
"GAPI_TOKEN is missing. Please set an API key."
)
client = genai.Client(api_key=api_key)
files = [client.files.upload(file=file_name)]
contents = [
types.Content(
role="user",
parts=[
types.Part.from_uri(
file_uri=files[0].uri,
mime_type=files[0].mime_type,
),
types.Part.from_text(text=text),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=["image", "text"],
response_mime_type="text/plain",
)
text_response = ""
image_path = None
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
temp_path = tmp.name
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
if not chunk.candidates or not chunk.candidates[0].content:
continue
candidate = chunk.candidates[0].content.parts[0]
if candidate.inline_data:
save_binary_file(temp_path, candidate.inline_data.data)
print(f"[DEBUG] Returned new image -> {temp_path}")
image_path = temp_path
break
else:
text_response += chunk.text + "\n"
del files
return image_path, text_response
#######################################
# 3. Diffusion Utility
#######################################
def generate_random_letters(length: int) -> str:
"""
Create a random sequence of uppercase/lowercase letters of given length.
"""
letters = string.ascii_lowercase + string.ascii_uppercase
return "".join(random.choice(letters) for _ in range(length))
def is_all_english(text: str) -> bool:
"""
Check if text consists only of English letters (a-z, A-Z), digits, spaces,
and a few basic punctuation characters. If so, return True.
Otherwise, False (includes Korean or other characters).
"""
return bool(re.match(r'^[a-zA-Z0-9\s\.,!\?\']*$', text))
def maybe_use_random_or_original(final_text: str) -> str:
"""
If final_text is strictly English/allowed chars, use it as-is.
If it contains other chars (like Korean, etc.),
replace with random letters of the same length.
"""
if not final_text:
return ""
if is_all_english(final_text):
return final_text
else:
return generate_random_letters(len(final_text))
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str:
"""
Replace <text1>, <text2>, <text3> with r1, r2, r3 respectively.
<text1> is required; if missing, we append something.
"""
if "<text1>" in prompt:
prompt = prompt.replace("<text1>", r1)
else:
prompt = f"{prompt} with clear readable text that says '{r1}'"
if "<text2>" in prompt:
prompt = prompt.replace("<text2>", r2)
if "<text3>" in prompt:
prompt = prompt.replace("<text3>", r3)
return prompt
def generate_initial_image(prompt, height, width, steps, scale, seed):
"""
Use Flux Pipeline to generate the initial image from the prompt.
"""
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"):
result = pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scale),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
return result
#######################################
# 4. Creating 2 Final Images
#######################################
def build_multi_change_instruction(r1, f1, r2, f2, r3, f3):
"""
Summarize instructions to replace (r1->f1), (r2->f2), (r3->f3).
"""
instructions = []
if r1 and f1:
instructions.append(f"Change any text reading '{r1}' in this image to '{f1}'.")
if r2 and f2:
instructions.append(f"Change any text reading '{r2}' in this image to '{f2}'.")
if r3 and f3:
instructions.append(f"Change any text reading '{r3}' in this image to '{f3}'.")
if instructions:
return " ".join(instructions)
return "No text changes needed."
def change_text_in_image_two_times(original_image, instruction):
"""
Call the text modification function twice,
returning 2 final variations.
"""
results = []
for version_tag in ["(A)", "(B)"]:
mod_instruction = f"{instruction} {version_tag}"
try:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
original_path = tmp.name
original_image.save(original_path)
image_path, text_response = generate_by_google_genai(
text=mod_instruction,
file_name=original_path
)
if image_path:
with open(image_path, "rb") as f:
image_data = f.read()
new_img = Image.open(io.BytesIO(image_data))
results.append(new_img)
else:
results.append(original_image)
except Exception as e:
raise gr.Error(f"Error: {e}")
return results
#######################################
# 5. Main Process
#######################################
def run_process(
prompt,
final_text1,
final_text2,
final_text3,
height,
width,
steps,
scale,
seed
):
"""
1) If prompt has Korean, translate to English
2) For each <textX>, if it's purely English, use as-is,
else generate random letters of the same length.
3) Generate initial image with these placeholders
4) Then produce 2 final images by replacing placeholders with real texts
"""
prompt_en = maybe_translate_to_english(prompt)
# Decide random vs original for each text
r1 = maybe_use_random_or_original(final_text1)
r2 = maybe_use_random_or_original(final_text2)
r3 = maybe_use_random_or_original(final_text3)
print(f"[DEBUG] Using placeholders: r1='{r1}', r2='{r2}', r3='{r3}'")
# Fill prompt
final_prompt = fill_prompt_with_random_texts(prompt_en, r1, r2, r3)
print(f"[DEBUG] final_prompt = {final_prompt}")
# Generate initial "random/original" image
_random_image = generate_initial_image(final_prompt, height, width, steps, scale, seed)
# Build final instructions & call twice -> 2 final images
instruction = build_multi_change_instruction(r1, final_text1, r2, final_text2, r3, final_text3)
final_imgs = change_text_in_image_two_times(_random_image, instruction)
# Return only the 2 final images (don't show the random image)
return [final_imgs[0], final_imgs[1]]
#######################################
# 6. Gradio UI
#######################################
with gr.Blocks(title="Eevery Text Imaginator: FLUX") as demo:
gr.Markdown(
"""
<h2 style="text-align:center; margin-bottom: 15px;">
<strong>Eevery Text Imaginator: FLUX</strong>
</h2>
<p style="text-align:center;">
This tool generates two final images from a prompt
containing placeholders <code><text1></code>, <code><text2></code>, <code><text3></code>.
If your chosen text is purely English, it will appear directly;
otherwise it becomes random letters in the initial phase.
</p>
<hr style="margin: 15px 0;">
"""
)
# 5 example prompts (focusing on <text1>, <text2>)
examples = [
[
"On a grand stage, <text1> in big letters and <text2> on the left side",
"HELLO", "WORLD", ""
],
[
"Futuristic neon sign with <text1>, plus <text2> near the bottom",
"WELCOME", "SALE", ""
],
[
"A classical poster reading <text1> in bold, <text2> as a subtitle",
"MUSICFEST", "2025", ""
],
[
"In a cartoon style, a speech bubble with <text1> and another text <text2>",
"HI!", "OhYes", ""
],
[
"Large billboard featuring <text1>, smaller text <text2> in the corner",
"ANNOUNCEMENT", "OPENNOW", ""
],
]
with gr.Row():
with gr.Column():
with gr.Box():
prompt_input = gr.Textbox(
lines=3,
label="Prompt (Korean or English)",
placeholder="On a grand stage, <text1> in big letters..."
)
final_text1 = gr.Textbox(
label="New Text #1 (Required)",
placeholder="Example: HELLO or 안녕하세요"
)
final_text2 = gr.Textbox(
label="New Text #2 (Optional)",
placeholder="Example: WORLD or 반갑습니다"
)
final_text3 = gr.Textbox(
label="New Text #3 (Optional)",
placeholder="(Leave blank if not used)"
)
with gr.Accordion("Advanced Settings (optional)", open=False):
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5)
seed = gr.Number(label="Seed", value=1234, precision=0)
run_btn = gr.Button("Generate 2 Final Images", variant="primary")
gr.Examples(
examples=examples,
inputs=[prompt_input, final_text1, final_text2, final_text3],
label="Example Prompts"
)
with gr.Column():
final_image_output1 = gr.Image(label="Final Image #1", type="pil")
final_image_output2 = gr.Image(label="Final Image #2", type="pil")
# We only display the 2 final images, not the initial random image
run_btn.click(
fn=run_process,
inputs=[
prompt_input,
final_text1,
final_text2,
final_text3,
height,
width,
steps,
scale,
seed
],
outputs=[final_image_output1, final_image_output2]
)
demo.launch(max_threads=20)
|