Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -35,16 +35,15 @@ os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
|
|
35 |
os.environ["HF_HUB_CACHE"] = CACHE_PATH
|
36 |
os.environ["HF_HOME"] = CACHE_PATH
|
37 |
|
38 |
-
# ํ์ด๋จธ ํด๋์ค
|
39 |
class timer:
|
40 |
def __init__(self, method_name="timed process"):
|
41 |
self.method = method_name
|
42 |
def __enter__(self):
|
43 |
self.start = time.time()
|
44 |
-
print(f"{self.method} starts")
|
45 |
def __exit__(self, exc_type, exc_val, exc_tb):
|
46 |
end = time.time()
|
47 |
-
print(f"{self.method} took {
|
48 |
|
49 |
#######################################
|
50 |
# 1. FLUX ํ์ดํ๋ผ์ธ ๋ก๋
|
@@ -61,30 +60,23 @@ pipe = FluxPipeline.from_pretrained(
|
|
61 |
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
|
62 |
pipe.load_lora_weights(lora_path)
|
63 |
pipe.fuse_lora(lora_scale=0.125)
|
64 |
-
|
65 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
66 |
|
67 |
#######################################
|
68 |
-
# 2. Google GenAI
|
69 |
#######################################
|
70 |
|
71 |
def save_binary_file(file_name, data):
|
72 |
-
"""Google GenAI์์ ์๋ต๋ฐ์ ์ด์ง ๋ฐ์ดํฐ๋ฅผ ์ด๋ฏธ์ง ํ์ผ๋ก ์ ์ฅ"""
|
73 |
with open(file_name, "wb") as f:
|
74 |
f.write(data)
|
75 |
|
76 |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
77 |
-
"""
|
78 |
-
Google GenAI(gemini) ๋ชจ๋ธ์ ํตํด ์ด๋ฏธ์ง/ํ
์คํธ๋ฅผ ์์ฑํ๊ฑฐ๋ ๋ณํ.
|
79 |
-
- text: ๋ณ๊ฒฝํ ํ
์คํธ๋ ๋ช
๋ น์ด ๋ฑ ํ๋กฌํํธ
|
80 |
-
- file_name: ์๋ณธ ์ด๋ฏธ์ง(์: .png) ๊ฒฝ๋ก
|
81 |
-
- model: ์ฌ์ฉํ gemini ๋ชจ๋ธ ์ด๋ฆ
|
82 |
-
"""
|
83 |
api_key = os.getenv("GAPI_TOKEN", None)
|
84 |
if not api_key:
|
85 |
raise ValueError(
|
86 |
"GAPI_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค. "
|
87 |
-
"Google GenAI API
|
88 |
)
|
89 |
|
90 |
client = genai.Client(api_key=api_key)
|
@@ -122,13 +114,13 @@ def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
|
122 |
contents=contents,
|
123 |
config=generate_content_config,
|
124 |
):
|
125 |
-
if not chunk.candidates or not chunk.candidates[0].content
|
126 |
continue
|
127 |
-
candidate = chunk.candidates[0].content.parts[0]
|
128 |
|
|
|
129 |
if candidate.inline_data:
|
130 |
save_binary_file(temp_path, candidate.inline_data.data)
|
131 |
-
print(f"
|
132 |
image_path = temp_path
|
133 |
break
|
134 |
else:
|
@@ -138,24 +130,43 @@ def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
|
138 |
return image_path, text_response
|
139 |
|
140 |
#######################################
|
141 |
-
# 3. Diffusion
|
142 |
#######################################
|
143 |
|
144 |
-
def
|
|
|
|
|
|
|
|
|
|
|
145 |
"""
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
"""
|
149 |
-
|
150 |
-
|
|
|
151 |
else:
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
result = pipe(
|
158 |
-
prompt=[
|
159 |
generator=torch.Generator().manual_seed(int(seed)),
|
160 |
num_inference_steps=int(steps),
|
161 |
guidance_scale=float(scale),
|
@@ -163,108 +174,163 @@ def generate_initial_image(prompt, text, height, width, steps, scale, seed):
|
|
163 |
width=int(width),
|
164 |
max_sequence_length=256
|
165 |
).images[0]
|
166 |
-
|
167 |
return result
|
168 |
|
169 |
-
|
|
|
170 |
"""
|
171 |
-
|
172 |
-
|
173 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
try:
|
|
|
175 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
176 |
original_path = tmp.name
|
177 |
original_image.save(original_path)
|
178 |
|
179 |
image_path, text_response = generate_by_google_genai(
|
180 |
-
text=
|
181 |
file_name=original_path
|
182 |
)
|
183 |
-
|
184 |
if image_path:
|
185 |
with open(image_path, "rb") as f:
|
186 |
image_data = f.read()
|
187 |
-
|
188 |
-
return
|
189 |
else:
|
190 |
-
#
|
191 |
-
|
192 |
-
|
193 |
except Exception as e:
|
194 |
raise gr.Error(f"Error: {e}")
|
195 |
|
196 |
#######################################
|
197 |
-
# 4.
|
198 |
-
#######################################
|
199 |
-
|
200 |
-
def generate_random_letters(length: int) -> str:
|
201 |
-
"""
|
202 |
-
length ๊ธธ์ด์ ์์ ์ํ๋ฒณ(๋์๋ฌธ์) ๋ฌธ์์ด ์์ฑ
|
203 |
-
"""
|
204 |
-
letters = string.ascii_lowercase + string.ascii_uppercase
|
205 |
-
return "".join(random.choice(letters) for _ in range(length))
|
206 |
-
|
207 |
-
#######################################
|
208 |
-
# 5. ์ต์ข
ํจ์: ๋ฒํผ ํ ๋ฒ์ผ๋ก
|
209 |
-
# (1) ๋ฌด์์ ์ํ๋ฒณ์ผ๋ก 1์ฐจ ์ด๋ฏธ์ง ์์ฑ
|
210 |
-
# (2) ์ง์ง "์๋ก ๋ฐ๊ฟ ํ
์คํธ"๋ก 2์ฐจ ์ด๋ฏธ์ง ์์ฑ
|
211 |
#######################################
|
212 |
|
213 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"""
|
215 |
-
|
216 |
-
|
|
|
217 |
"""
|
218 |
-
# (A)
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
# (B)
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
# (C) 2์ฐจ ์ด๋ฏธ์ง: ์ค์ final_text๋ก ๊ต์ฒด
|
227 |
-
final_image = change_text_in_image(random_image, final_text)
|
228 |
-
|
229 |
return [random_image, final_image]
|
230 |
|
231 |
#######################################
|
232 |
-
#
|
233 |
#######################################
|
234 |
|
235 |
-
with gr.Blocks(title="Flux + Google GenAI (
|
236 |
gr.Markdown(
|
237 |
"""
|
238 |
-
# Flux + Google GenAI:
|
239 |
-
|
240 |
-
|
241 |
-
1
|
242 |
-
|
243 |
-
|
244 |
-
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
252 |
"""
|
253 |
)
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
with gr.Row():
|
256 |
with gr.Column():
|
257 |
prompt_input = gr.Textbox(
|
258 |
lines=3,
|
259 |
-
label="Prompt (use `<
|
260 |
-
placeholder="
|
|
|
|
|
|
|
|
|
261 |
)
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
placeholder="์) ์๋
ํ์ธ์"
|
266 |
)
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
268 |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
|
269 |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
|
270 |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
@@ -273,14 +339,30 @@ with gr.Blocks(title="Flux + Google GenAI (Random & Then Real Text)") as demo:
|
|
273 |
|
274 |
run_btn = gr.Button("Generate Images", variant="primary")
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
with gr.Column():
|
277 |
random_image_output = gr.Image(label="1) Random Text Image", type="pil")
|
278 |
final_image_output = gr.Image(label="2) Final Text Image", type="pil")
|
279 |
|
280 |
-
# ๋ฒํผ
|
281 |
run_btn.click(
|
282 |
-
fn=
|
283 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
outputs=[random_image_output, final_image_output]
|
285 |
)
|
286 |
|
|
|
35 |
os.environ["HF_HUB_CACHE"] = CACHE_PATH
|
36 |
os.environ["HF_HOME"] = CACHE_PATH
|
37 |
|
|
|
38 |
class timer:
|
39 |
def __init__(self, method_name="timed process"):
|
40 |
self.method = method_name
|
41 |
def __enter__(self):
|
42 |
self.start = time.time()
|
43 |
+
print(f"[TIMER] {self.method} starts")
|
44 |
def __exit__(self, exc_type, exc_val, exc_tb):
|
45 |
end = time.time()
|
46 |
+
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s")
|
47 |
|
48 |
#######################################
|
49 |
# 1. FLUX ํ์ดํ๋ผ์ธ ๋ก๋
|
|
|
60 |
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
|
61 |
pipe.load_lora_weights(lora_path)
|
62 |
pipe.fuse_lora(lora_scale=0.125)
|
|
|
63 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
64 |
|
65 |
#######################################
|
66 |
+
# 2. Google GenAI (Gemini) - ์ด๋ฏธ์ง ๋ณํ ํจ์
|
67 |
#######################################
|
68 |
|
69 |
def save_binary_file(file_name, data):
|
|
|
70 |
with open(file_name, "wb") as f:
|
71 |
f.write(data)
|
72 |
|
73 |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
74 |
+
"""Gemini ๋ชจ๋ธ์ ํตํด ์ด๋ฏธ์ง ๋ด๋ถ ํ
์คํธ๋ฅผ ๋ณ๊ฒฝ."""
|
|
|
|
|
|
|
|
|
|
|
75 |
api_key = os.getenv("GAPI_TOKEN", None)
|
76 |
if not api_key:
|
77 |
raise ValueError(
|
78 |
"GAPI_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค. "
|
79 |
+
"Google GenAI API๋ฅผ ์ฌ์ฉํ๊ธฐ ์ํด์๋ GAPI_TOKEN์ด ํ์ํฉ๋๋ค."
|
80 |
)
|
81 |
|
82 |
client = genai.Client(api_key=api_key)
|
|
|
114 |
contents=contents,
|
115 |
config=generate_content_config,
|
116 |
):
|
117 |
+
if not chunk.candidates or not chunk.candidates[0].content:
|
118 |
continue
|
|
|
119 |
|
120 |
+
candidate = chunk.candidates[0].content.parts[0]
|
121 |
if candidate.inline_data:
|
122 |
save_binary_file(temp_path, candidate.inline_data.data)
|
123 |
+
print(f"[DEBUG] Gemini returned image -> {temp_path}")
|
124 |
image_path = temp_path
|
125 |
break
|
126 |
else:
|
|
|
130 |
return image_path, text_response
|
131 |
|
132 |
#######################################
|
133 |
+
# 3. Diffusion (Flux)์ฉ ํจ์
|
134 |
#######################################
|
135 |
|
136 |
+
def generate_random_letters(length: int) -> str:
|
137 |
+
"""length ๊ธธ์ด๋งํผ ๋์๋ฌธ์ ์ํ๋ฒณ์ ๋ฌด์์๋ก ์์ฑ."""
|
138 |
+
letters = string.ascii_lowercase + string.ascii_uppercase
|
139 |
+
return "".join(random.choice(letters) for _ in range(length))
|
140 |
+
|
141 |
+
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str:
|
142 |
"""
|
143 |
+
ํ๋กฌํํธ ๋ด <text1>, <text2>, <text3>๋ฅผ
|
144 |
+
๊ฐ๊ฐ r1, r2, r3๋ก ์นํ.
|
145 |
+
- <text1>์ ํ์ (์์ผ๋ฉด ์๋์ผ๋ก ๋ค์ ๋ถ์).
|
146 |
+
- <text2>, <text3>๋ ์์ผ๋ฉด ์นํ, ์์ผ๋ฉด ๋ฌด์.
|
147 |
"""
|
148 |
+
# 1) <text1>์ ํ์
|
149 |
+
if "<text1>" in prompt:
|
150 |
+
prompt = prompt.replace("<text1>", r1)
|
151 |
else:
|
152 |
+
# ์๋ ๋ง๋ถ์
|
153 |
+
prompt = f"{prompt} with clear readable text that says '{r1}'"
|
154 |
+
|
155 |
+
# 2) <text2>, <text3>๋ ์ ํ
|
156 |
+
if "<text2>" in prompt:
|
157 |
+
prompt = prompt.replace("<text2>", r2)
|
158 |
+
if "<text3>" in prompt:
|
159 |
+
prompt = prompt.replace("<text3>", r3)
|
160 |
+
|
161 |
+
return prompt
|
162 |
|
163 |
+
def generate_initial_image(prompt, random1, random2, random3, height, width, steps, scale, seed):
|
164 |
+
"""
|
165 |
+
Flux ํ์ดํ๋ผ์ธ์ ์ด์ฉํด (r1, r2, r3)๊ฐ ๋ค์ด๊ฐ ์ด๋ฏธ์ง๋ฅผ ์์ฑ.
|
166 |
+
"""
|
167 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"):
|
168 |
result = pipe(
|
169 |
+
prompt=[prompt],
|
170 |
generator=torch.Generator().manual_seed(int(seed)),
|
171 |
num_inference_steps=int(steps),
|
172 |
guidance_scale=float(scale),
|
|
|
174 |
width=int(width),
|
175 |
max_sequence_length=256
|
176 |
).images[0]
|
|
|
177 |
return result
|
178 |
|
179 |
+
|
180 |
+
def change_multi_text_in_image(original_image, random1, final1, random2, final2, random3, final3):
|
181 |
"""
|
182 |
+
Gemini๋ฅผ ํตํด, ์ด๋ฏธ์ง ์์ r1->final1, r2->final2, r3->final3 ์์ผ๋ก ํ
์คํธ ๊ต์ฒด.
|
183 |
+
- r2, final2 (๋๋ r3, final3)๊ฐ ๋น ๋ฌธ์์ด์ด๋ฉด ํด๋น ๊ต์ฒด๋ ๊ฑด๋๋.
|
184 |
"""
|
185 |
+
# ๊ต์ฒด ์ง์๋ฌธ ๋ง๋ค๊ธฐ
|
186 |
+
instructions = []
|
187 |
+
if random1 and final1:
|
188 |
+
instructions.append(f"Change any text reading '{random1}' in this image to '{final1}'.")
|
189 |
+
if random2 and final2:
|
190 |
+
instructions.append(f"Change any text reading '{random2}' in this image to '{final2}'.")
|
191 |
+
if random3 and final3:
|
192 |
+
instructions.append(f"Change any text reading '{random3}' in this image to '{final3}'.")
|
193 |
+
|
194 |
+
# ๋ง์ฝ ๊ต์ฒด ์ง์๋ฌธ์ด ์๋ค๋ฉด ๊ทธ๋ฅ return original_image
|
195 |
+
if not instructions:
|
196 |
+
print("[WARN] No text changes requested!")
|
197 |
+
return original_image
|
198 |
+
|
199 |
+
full_instruction = " ".join(instructions)
|
200 |
try:
|
201 |
+
# ์์ ํ์ผ์ original_image ์ ์ฅ
|
202 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
203 |
original_path = tmp.name
|
204 |
original_image.save(original_path)
|
205 |
|
206 |
image_path, text_response = generate_by_google_genai(
|
207 |
+
text=full_instruction,
|
208 |
file_name=original_path
|
209 |
)
|
|
|
210 |
if image_path:
|
211 |
with open(image_path, "rb") as f:
|
212 |
image_data = f.read()
|
213 |
+
new_img = Image.open(io.BytesIO(image_data))
|
214 |
+
return new_img
|
215 |
else:
|
216 |
+
# ์ด๋ฏธ์ง ์์ด ํ
์คํธ๋ง ์จ ๊ฒฝ์ฐ
|
217 |
+
print("[WARN] Gemini returned only text:", text_response)
|
218 |
+
return original_image
|
219 |
except Exception as e:
|
220 |
raise gr.Error(f"Error: {e}")
|
221 |
|
222 |
#######################################
|
223 |
+
# 4. ๋ฉ์ธ ํ๋ก์ธ์ค ํจ์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
#######################################
|
225 |
|
226 |
+
def run_process(
|
227 |
+
prompt,
|
228 |
+
final_text1,
|
229 |
+
final_text2,
|
230 |
+
final_text3,
|
231 |
+
height,
|
232 |
+
width,
|
233 |
+
steps,
|
234 |
+
scale,
|
235 |
+
seed
|
236 |
+
):
|
237 |
"""
|
238 |
+
1) final_text1(ํ์), final_text2, final_text3(์ต์
) ๊ฐ๊ฐ ๊ธธ์ด์ ๋ง์ถฐ ๋ฌด์์ ์ํ๋ฒณ ๋ง๋ค๊ธฐ.
|
239 |
+
2) prompt ๋ด <text1>, <text2>, <text3> ์นํ -> Flux๋ก 1์ฐจ(๋๋ค) ์ด๋ฏธ์ง.
|
240 |
+
3) Gemini ํธ์ถ -> r1->final_text1, r2->final_text2, r3->final_text3 ๊ต์ฒด -> ์ต์ข
์ด๋ฏธ์ง.
|
241 |
"""
|
242 |
+
# (A) ๋ฌด์์ ์ํ๋ฒณ
|
243 |
+
r1 = generate_random_letters(len(final_text1)) if final_text1 else ""
|
244 |
+
r2 = generate_random_letters(len(final_text2)) if final_text2 else ""
|
245 |
+
r3 = generate_random_letters(len(final_text3)) if final_text3 else ""
|
246 |
+
|
247 |
+
# (B) ํ๋กฌํํธ ์นํ
|
248 |
+
final_prompt = fill_prompt_with_random_texts(prompt, r1, r2, r3)
|
249 |
+
print(f"[DEBUG] final_prompt = {final_prompt}")
|
250 |
+
|
251 |
+
# (C) 1์ฐจ ์ด๋ฏธ์ง (๋๋ค ํ
์คํธ)
|
252 |
+
random_image = generate_initial_image(final_prompt, r1, r2, r3, height, width, steps, scale, seed)
|
253 |
+
|
254 |
+
# (D) 2์ฐจ ์ด๋ฏธ์ง (์ค์ ํ
์คํธ)
|
255 |
+
final_image = change_multi_text_in_image(
|
256 |
+
random_image,
|
257 |
+
r1, final_text1,
|
258 |
+
r2, final_text2,
|
259 |
+
r3, final_text3
|
260 |
+
)
|
261 |
|
|
|
|
|
|
|
262 |
return [random_image, final_image]
|
263 |
|
264 |
#######################################
|
265 |
+
# 5. Gradio UI
|
266 |
#######################################
|
267 |
|
268 |
+
with gr.Blocks(title="Flux + Google GenAI (Up to 3 Text placeholders)") as demo:
|
269 |
gr.Markdown(
|
270 |
"""
|
271 |
+
# Flux + Google GenAI: ์ต๋ 3๊ฐ์ `<text>` ๊ต์ฒด
|
272 |
+
|
273 |
+
## ์ฌ์ฉ ๋ฐฉ๋ฒ
|
274 |
+
1. ์๋ Prompt์ `<text1>`, `<text2>`, `<text3>`๋ฅผ ์ต๋ 3๊ฐ๊น์ง ๋ฐฐ์น ๊ฐ๋ฅ.
|
275 |
+
- ์) "A poster with <text1> in large letters, also <text2> in the corner"
|
276 |
+
- **<text1>์ ํ์**(์์ผ๋ฉด ์๋์ผ๋ก ๋ฌธ๊ตฌ๊ฐ ๋ค์ ๋ถ์)
|
277 |
+
- <text2>, <text3>๋ ๋ฃ์ด๋ ๋๊ณ , ์ ๋ฃ์ด๋ ๋จ.
|
278 |
+
2. "New Text #1" (ํ์), "New Text #2", "New Text #3"๋ฅผ ์
๋ ฅ.
|
279 |
+
- #2, #3๋ ๋น์ ๋๋ฉด ํด๋น ์๋ฆฌ ๊ต์ฒด ์์.
|
280 |
+
3. "Generate Images" ๋ฒํผ โ
|
281 |
+
(1) `<text1>`, `<text2>`, `<text3>` ์๋ฆฌ์ (๋๋ ์๋์ผ๋ก) **๋ฌด์์ ์ํ๋ฒณ** ๋ฃ์ 1์ฐจ ์ด๋ฏธ์ง ์์ฑ
|
282 |
+
(2) ์ด์ด Gemini ๋ชจ๋ธ์ ํตํด ๋ฌด์์ ์ํ๋ฒณ โ ์ค์ "New Text #1/2/3" ๋ณ๊ฒฝํ 2์ฐจ ์ด๋ฏธ์ง
|
283 |
+
- **๋ ์ด๋ฏธ์ง**(๋๋ค ํ
์คํธ โ ์ต์ข
ํ
์คํธ)๊ฐ ์์๋๋ก ์ถ๋ ฅ๋ฉ๋๋ค.
|
284 |
+
|
285 |
+
---
|
286 |
"""
|
287 |
)
|
288 |
|
289 |
+
# ์์ 5๊ฐ
|
290 |
+
examples = [
|
291 |
+
[
|
292 |
+
"A futuristic billboard shows <text1> and a small sign <text2> on the left side. <text3> is a hidden watermark.",
|
293 |
+
"HELLO", "WELCOME", "2025"
|
294 |
+
],
|
295 |
+
[
|
296 |
+
"A fantasy poster with <text1> and <text2> in stylized letters, plus a tiny note <text3> at the bottom.",
|
297 |
+
"Dragons", "MagicRealm", "Beware!"
|
298 |
+
],
|
299 |
+
[
|
300 |
+
"A neon sign reading <text1>, with a secondary text <text2> below. <text3> might appear in the corner.",
|
301 |
+
"OPEN", "24HOUR", "NoSmoking"
|
302 |
+
],
|
303 |
+
[
|
304 |
+
"A big invitation card with main text <text1>, subtitle <text2>, signature <text3> in cursive.",
|
305 |
+
"Birthday Party", "Today Only", "From Your Friend"
|
306 |
+
],
|
307 |
+
[
|
308 |
+
"A large graffiti wall with <text1> in bold letters, plus <text2> and <text3> near the edges.",
|
309 |
+
"FREEDOM", "HOPE", "LOVE"
|
310 |
+
]
|
311 |
+
]
|
312 |
+
|
313 |
with gr.Row():
|
314 |
with gr.Column():
|
315 |
prompt_input = gr.Textbox(
|
316 |
lines=3,
|
317 |
+
label="Prompt (use `<text1>`, `<text2>`, `<text3>` as needed)",
|
318 |
+
placeholder="Ex) A poster with <text1>, plus a line <text2>, etc."
|
319 |
+
)
|
320 |
+
final_text1 = gr.Textbox(
|
321 |
+
label="New Text #1 (Required)",
|
322 |
+
placeholder="Ex) HELLO"
|
323 |
)
|
324 |
+
final_text2 = gr.Textbox(
|
325 |
+
label="New Text #2 (Optional)",
|
326 |
+
placeholder="Ex) WELCOME"
|
|
|
327 |
)
|
328 |
+
final_text3 = gr.Textbox(
|
329 |
+
label="New Text #3 (Optional)",
|
330 |
+
placeholder="Ex) 2025 or anything"
|
331 |
+
)
|
332 |
+
|
333 |
+
with gr.Accordion("Advanced Settings", open=False):
|
334 |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
|
335 |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
|
336 |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
|
|
339 |
|
340 |
run_btn = gr.Button("Generate Images", variant="primary")
|
341 |
|
342 |
+
gr.Examples(
|
343 |
+
examples=examples,
|
344 |
+
inputs=[prompt_input, final_text1, final_text2, final_text3],
|
345 |
+
label="Click to load example"
|
346 |
+
)
|
347 |
+
|
348 |
with gr.Column():
|
349 |
random_image_output = gr.Image(label="1) Random Text Image", type="pil")
|
350 |
final_image_output = gr.Image(label="2) Final Text Image", type="pil")
|
351 |
|
352 |
+
# ๋ฒํผ ์ก์
|
353 |
run_btn.click(
|
354 |
+
fn=run_process,
|
355 |
+
inputs=[
|
356 |
+
prompt_input,
|
357 |
+
final_text1,
|
358 |
+
final_text2,
|
359 |
+
final_text3,
|
360 |
+
height,
|
361 |
+
width,
|
362 |
+
steps,
|
363 |
+
scale,
|
364 |
+
seed
|
365 |
+
],
|
366 |
outputs=[random_image_output, final_image_output]
|
367 |
)
|
368 |
|