Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
from os import path
|
4 |
import tempfile
|
@@ -13,19 +14,20 @@ import string
|
|
13 |
import torch
|
14 |
from PIL import Image
|
15 |
|
|
|
16 |
from safetensors.torch import load_file
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
|
19 |
-
# Diffusers
|
20 |
import gradio as gr
|
21 |
from diffusers import FluxPipeline
|
22 |
|
23 |
-
#
|
24 |
from google import genai
|
25 |
from google.genai import types
|
26 |
|
27 |
#######################################
|
28 |
-
# 0.
|
29 |
#######################################
|
30 |
|
31 |
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
|
@@ -35,6 +37,25 @@ os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH
|
|
35 |
os.environ["HF_HUB_CACHE"] = CACHE_PATH
|
36 |
os.environ["HF_HOME"] = CACHE_PATH
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
class timer:
|
39 |
def __init__(self, method_name="timed process"):
|
40 |
self.method = method_name
|
@@ -46,7 +67,7 @@ class timer:
|
|
46 |
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s")
|
47 |
|
48 |
#######################################
|
49 |
-
# 1. FLUX
|
50 |
#######################################
|
51 |
|
52 |
if not path.exists(CACHE_PATH):
|
@@ -63,7 +84,7 @@ pipe.fuse_lora(lora_scale=0.125)
|
|
63 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
64 |
|
65 |
#######################################
|
66 |
-
# 2.
|
67 |
#######################################
|
68 |
|
69 |
def save_binary_file(file_name, data):
|
@@ -71,12 +92,14 @@ def save_binary_file(file_name, data):
|
|
71 |
f.write(data)
|
72 |
|
73 |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
74 |
-
"""
|
|
|
|
|
|
|
75 |
api_key = os.getenv("GAPI_TOKEN", None)
|
76 |
if not api_key:
|
77 |
raise ValueError(
|
78 |
-
"GAPI_TOKEN
|
79 |
-
"Google GenAI API를 사용하기 위해서는 GAPI_TOKEN이 필요합니다."
|
80 |
)
|
81 |
|
82 |
client = genai.Client(api_key=api_key)
|
@@ -120,7 +143,7 @@ def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
|
120 |
candidate = chunk.candidates[0].content.parts[0]
|
121 |
if candidate.inline_data:
|
122 |
save_binary_file(temp_path, candidate.inline_data.data)
|
123 |
-
print(f"[DEBUG]
|
124 |
image_path = temp_path
|
125 |
break
|
126 |
else:
|
@@ -129,30 +152,49 @@ def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
|
129 |
del files
|
130 |
return image_path, text_response
|
131 |
|
|
|
132 |
#######################################
|
133 |
-
# 3. Diffusion
|
134 |
#######################################
|
135 |
|
136 |
def generate_random_letters(length: int) -> str:
|
137 |
-
"""
|
|
|
|
|
138 |
letters = string.ascii_lowercase + string.ascii_uppercase
|
139 |
return "".join(random.choice(letters) for _ in range(length))
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str:
|
142 |
"""
|
143 |
-
|
144 |
-
|
145 |
-
- <text1>은 필수 (없으면 자동으로 뒤에 붙임).
|
146 |
-
- <text2>, <text3>는 있으면 치환, 없으면 무시.
|
147 |
"""
|
148 |
-
# 1) <text1>은 필수
|
149 |
if "<text1>" in prompt:
|
150 |
prompt = prompt.replace("<text1>", r1)
|
151 |
else:
|
152 |
-
# 자동 덧붙임
|
153 |
prompt = f"{prompt} with clear readable text that says '{r1}'"
|
154 |
|
155 |
-
# 2) <text2>, <text3>는 선택
|
156 |
if "<text2>" in prompt:
|
157 |
prompt = prompt.replace("<text2>", r2)
|
158 |
if "<text3>" in prompt:
|
@@ -160,9 +202,9 @@ def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str
|
|
160 |
|
161 |
return prompt
|
162 |
|
163 |
-
def generate_initial_image(prompt,
|
164 |
"""
|
165 |
-
Flux
|
166 |
"""
|
167 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"):
|
168 |
result = pipe(
|
@@ -177,50 +219,56 @@ def generate_initial_image(prompt, random1, random2, random3, height, width, ste
|
|
177 |
return result
|
178 |
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
"""
|
182 |
-
|
183 |
-
- r2, final2 (또는 r3, final3)가 빈 문자열이면 해당 교체는 건너뜀.
|
184 |
"""
|
185 |
-
# 교체 지시문 만들기
|
186 |
instructions = []
|
187 |
-
if
|
188 |
-
instructions.append(f"Change any text reading '{
|
189 |
-
if
|
190 |
-
instructions.append(f"Change any text reading '{
|
191 |
-
if
|
192 |
-
instructions.append(f"Change any text reading '{
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
|
222 |
#######################################
|
223 |
-
#
|
224 |
#######################################
|
225 |
|
226 |
def run_process(
|
@@ -235,121 +283,121 @@ def run_process(
|
|
235 |
seed
|
236 |
):
|
237 |
"""
|
238 |
-
1)
|
239 |
-
2)
|
240 |
-
|
|
|
|
|
241 |
"""
|
242 |
-
|
243 |
-
r1 = generate_random_letters(len(final_text1)) if final_text1 else ""
|
244 |
-
r2 = generate_random_letters(len(final_text2)) if final_text2 else ""
|
245 |
-
r3 = generate_random_letters(len(final_text3)) if final_text3 else ""
|
246 |
|
247 |
-
#
|
248 |
-
|
249 |
-
|
|
|
250 |
|
251 |
-
|
252 |
-
random_image = generate_initial_image(final_prompt, r1, r2, r3, height, width, steps, scale, seed)
|
253 |
|
254 |
-
#
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
)
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
263 |
|
264 |
#######################################
|
265 |
-
#
|
266 |
#######################################
|
267 |
|
268 |
-
with gr.Blocks(title="
|
269 |
gr.Markdown(
|
270 |
"""
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
- **두 이미지**(랜덤 텍스트 → 최종 텍스트)가 순서대로 출력됩니다.
|
284 |
-
|
285 |
-
---
|
286 |
"""
|
287 |
)
|
288 |
|
289 |
-
#
|
290 |
examples = [
|
291 |
[
|
292 |
-
"
|
293 |
-
"HELLO", "
|
294 |
],
|
295 |
[
|
296 |
-
"
|
297 |
-
"
|
298 |
],
|
299 |
[
|
300 |
-
"A
|
301 |
-
"
|
302 |
],
|
303 |
[
|
304 |
-
"
|
305 |
-
"
|
306 |
],
|
307 |
[
|
308 |
-
"
|
309 |
-
"
|
310 |
-
]
|
311 |
]
|
312 |
|
313 |
with gr.Row():
|
314 |
with gr.Column():
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
334 |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
|
335 |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
|
336 |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
337 |
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5)
|
338 |
-
seed = gr.Number(label="Seed
|
339 |
|
340 |
-
run_btn = gr.Button("Generate Images", variant="primary")
|
341 |
|
342 |
gr.Examples(
|
343 |
examples=examples,
|
344 |
inputs=[prompt_input, final_text1, final_text2, final_text3],
|
345 |
-
label="
|
346 |
)
|
347 |
|
348 |
with gr.Column():
|
349 |
-
|
350 |
-
|
351 |
|
352 |
-
#
|
353 |
run_btn.click(
|
354 |
fn=run_process,
|
355 |
inputs=[
|
@@ -363,7 +411,7 @@ with gr.Blocks(title="Flux + Google GenAI (Up to 3 Text placeholders)") as demo:
|
|
363 |
scale,
|
364 |
seed
|
365 |
],
|
366 |
-
outputs=[
|
367 |
)
|
368 |
|
369 |
demo.launch(max_threads=20)
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
import time
|
4 |
from os import path
|
5 |
import tempfile
|
|
|
14 |
import torch
|
15 |
from PIL import Image
|
16 |
|
17 |
+
from transformers import pipeline
|
18 |
from safetensors.torch import load_file
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
|
21 |
+
# Diffusers
|
22 |
import gradio as gr
|
23 |
from diffusers import FluxPipeline
|
24 |
|
25 |
+
# (Internal) text-modification library
|
26 |
from google import genai
|
27 |
from google.genai import types
|
28 |
|
29 |
#######################################
|
30 |
+
# 0. Environment & Translation Pipeline
|
31 |
#######################################
|
32 |
|
33 |
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd()
|
|
|
37 |
os.environ["HF_HUB_CACHE"] = CACHE_PATH
|
38 |
os.environ["HF_HOME"] = CACHE_PATH
|
39 |
|
40 |
+
# Translation (Korean -> English), CPU only
|
41 |
+
translator = pipeline(
|
42 |
+
task="translation",
|
43 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
44 |
+
device=-1 # force CPU
|
45 |
+
)
|
46 |
+
|
47 |
+
def maybe_translate_to_english(text: str) -> str:
|
48 |
+
"""
|
49 |
+
If the prompt contains any Korean characters, translate to English.
|
50 |
+
Otherwise, return as-is.
|
51 |
+
"""
|
52 |
+
if re.search("[가-힣]", text):
|
53 |
+
translated = translator(text)[0]["translation_text"]
|
54 |
+
print(f"[TRANSLATE] Detected Korean -> '{text}' -> '{translated}'")
|
55 |
+
return translated
|
56 |
+
return text
|
57 |
+
|
58 |
+
# Simple Timer Class
|
59 |
class timer:
|
60 |
def __init__(self, method_name="timed process"):
|
61 |
self.method = method_name
|
|
|
67 |
print(f"[TIMER] {self.method} took {round(end - self.start, 2)}s")
|
68 |
|
69 |
#######################################
|
70 |
+
# 1. Load FLUX Pipeline
|
71 |
#######################################
|
72 |
|
73 |
if not path.exists(CACHE_PATH):
|
|
|
84 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
85 |
|
86 |
#######################################
|
87 |
+
# 2. Internal Text Modification Functions
|
88 |
#######################################
|
89 |
|
90 |
def save_binary_file(file_name, data):
|
|
|
92 |
f.write(data)
|
93 |
|
94 |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"):
|
95 |
+
"""
|
96 |
+
Internally modifies text within an image, returning a new image path.
|
97 |
+
(Screen instructions do not mention 'Google'.)
|
98 |
+
"""
|
99 |
api_key = os.getenv("GAPI_TOKEN", None)
|
100 |
if not api_key:
|
101 |
raise ValueError(
|
102 |
+
"GAPI_TOKEN is missing. Please set an API key."
|
|
|
103 |
)
|
104 |
|
105 |
client = genai.Client(api_key=api_key)
|
|
|
143 |
candidate = chunk.candidates[0].content.parts[0]
|
144 |
if candidate.inline_data:
|
145 |
save_binary_file(temp_path, candidate.inline_data.data)
|
146 |
+
print(f"[DEBUG] Returned new image -> {temp_path}")
|
147 |
image_path = temp_path
|
148 |
break
|
149 |
else:
|
|
|
152 |
del files
|
153 |
return image_path, text_response
|
154 |
|
155 |
+
|
156 |
#######################################
|
157 |
+
# 3. Diffusion Utility
|
158 |
#######################################
|
159 |
|
160 |
def generate_random_letters(length: int) -> str:
|
161 |
+
"""
|
162 |
+
Create a random sequence of uppercase/lowercase letters of given length.
|
163 |
+
"""
|
164 |
letters = string.ascii_lowercase + string.ascii_uppercase
|
165 |
return "".join(random.choice(letters) for _ in range(length))
|
166 |
|
167 |
+
def is_all_english(text: str) -> bool:
|
168 |
+
"""
|
169 |
+
Check if text consists only of English letters (a-z, A-Z), digits, spaces,
|
170 |
+
and a few basic punctuation characters. If so, return True.
|
171 |
+
Otherwise, False (includes Korean or other characters).
|
172 |
+
"""
|
173 |
+
return bool(re.match(r'^[a-zA-Z0-9\s\.,!\?\']*$', text))
|
174 |
+
|
175 |
+
def maybe_use_random_or_original(final_text: str) -> str:
|
176 |
+
"""
|
177 |
+
If final_text is strictly English/allowed chars, use it as-is.
|
178 |
+
If it contains other chars (like Korean, etc.),
|
179 |
+
replace with random letters of the same length.
|
180 |
+
"""
|
181 |
+
if not final_text:
|
182 |
+
return ""
|
183 |
+
if is_all_english(final_text):
|
184 |
+
return final_text
|
185 |
+
else:
|
186 |
+
return generate_random_letters(len(final_text))
|
187 |
+
|
188 |
def fill_prompt_with_random_texts(prompt: str, r1: str, r2: str, r3: str) -> str:
|
189 |
"""
|
190 |
+
Replace <text1>, <text2>, <text3> with r1, r2, r3 respectively.
|
191 |
+
<text1> is required; if missing, we append something.
|
|
|
|
|
192 |
"""
|
|
|
193 |
if "<text1>" in prompt:
|
194 |
prompt = prompt.replace("<text1>", r1)
|
195 |
else:
|
|
|
196 |
prompt = f"{prompt} with clear readable text that says '{r1}'"
|
197 |
|
|
|
198 |
if "<text2>" in prompt:
|
199 |
prompt = prompt.replace("<text2>", r2)
|
200 |
if "<text3>" in prompt:
|
|
|
202 |
|
203 |
return prompt
|
204 |
|
205 |
+
def generate_initial_image(prompt, height, width, steps, scale, seed):
|
206 |
"""
|
207 |
+
Use Flux Pipeline to generate the initial image from the prompt.
|
208 |
"""
|
209 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("Flux Generation"):
|
210 |
result = pipe(
|
|
|
219 |
return result
|
220 |
|
221 |
|
222 |
+
#######################################
|
223 |
+
# 4. Creating 2 Final Images
|
224 |
+
#######################################
|
225 |
+
|
226 |
+
def build_multi_change_instruction(r1, f1, r2, f2, r3, f3):
|
227 |
"""
|
228 |
+
Summarize instructions to replace (r1->f1), (r2->f2), (r3->f3).
|
|
|
229 |
"""
|
|
|
230 |
instructions = []
|
231 |
+
if r1 and f1:
|
232 |
+
instructions.append(f"Change any text reading '{r1}' in this image to '{f1}'.")
|
233 |
+
if r2 and f2:
|
234 |
+
instructions.append(f"Change any text reading '{r2}' in this image to '{f2}'.")
|
235 |
+
if r3 and f3:
|
236 |
+
instructions.append(f"Change any text reading '{r3}' in this image to '{f3}'.")
|
237 |
+
if instructions:
|
238 |
+
return " ".join(instructions)
|
239 |
+
return "No text changes needed."
|
240 |
+
|
241 |
+
def change_text_in_image_two_times(original_image, instruction):
|
242 |
+
"""
|
243 |
+
Call the text modification function twice,
|
244 |
+
returning 2 final variations.
|
245 |
+
"""
|
246 |
+
results = []
|
247 |
+
for version_tag in ["(A)", "(B)"]:
|
248 |
+
mod_instruction = f"{instruction} {version_tag}"
|
249 |
+
try:
|
250 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
251 |
+
original_path = tmp.name
|
252 |
+
original_image.save(original_path)
|
253 |
+
|
254 |
+
image_path, text_response = generate_by_google_genai(
|
255 |
+
text=mod_instruction,
|
256 |
+
file_name=original_path
|
257 |
+
)
|
258 |
+
if image_path:
|
259 |
+
with open(image_path, "rb") as f:
|
260 |
+
image_data = f.read()
|
261 |
+
new_img = Image.open(io.BytesIO(image_data))
|
262 |
+
results.append(new_img)
|
263 |
+
else:
|
264 |
+
results.append(original_image)
|
265 |
+
except Exception as e:
|
266 |
+
raise gr.Error(f"Error: {e}")
|
267 |
+
return results
|
268 |
+
|
269 |
|
270 |
#######################################
|
271 |
+
# 5. Main Process
|
272 |
#######################################
|
273 |
|
274 |
def run_process(
|
|
|
283 |
seed
|
284 |
):
|
285 |
"""
|
286 |
+
1) If prompt has Korean, translate to English
|
287 |
+
2) For each <textX>, if it's purely English, use as-is,
|
288 |
+
else generate random letters of the same length.
|
289 |
+
3) Generate initial image with these placeholders
|
290 |
+
4) Then produce 2 final images by replacing placeholders with real texts
|
291 |
"""
|
292 |
+
prompt_en = maybe_translate_to_english(prompt)
|
|
|
|
|
|
|
293 |
|
294 |
+
# Decide random vs original for each text
|
295 |
+
r1 = maybe_use_random_or_original(final_text1)
|
296 |
+
r2 = maybe_use_random_or_original(final_text2)
|
297 |
+
r3 = maybe_use_random_or_original(final_text3)
|
298 |
|
299 |
+
print(f"[DEBUG] Using placeholders: r1='{r1}', r2='{r2}', r3='{r3}'")
|
|
|
300 |
|
301 |
+
# Fill prompt
|
302 |
+
final_prompt = fill_prompt_with_random_texts(prompt_en, r1, r2, r3)
|
303 |
+
print(f"[DEBUG] final_prompt = {final_prompt}")
|
304 |
+
|
305 |
+
# Generate initial "random/original" image
|
306 |
+
_random_image = generate_initial_image(final_prompt, height, width, steps, scale, seed)
|
|
|
307 |
|
308 |
+
# Build final instructions & call twice -> 2 final images
|
309 |
+
instruction = build_multi_change_instruction(r1, final_text1, r2, final_text2, r3, final_text3)
|
310 |
+
final_imgs = change_text_in_image_two_times(_random_image, instruction)
|
311 |
+
# Return only the 2 final images (don't show the random image)
|
312 |
+
return [final_imgs[0], final_imgs[1]]
|
313 |
|
314 |
#######################################
|
315 |
+
# 6. Gradio UI
|
316 |
#######################################
|
317 |
|
318 |
+
with gr.Blocks(title="Eevery Text Imaginator: FLUX") as demo:
|
319 |
gr.Markdown(
|
320 |
"""
|
321 |
+
<h2 style="text-align:center; margin-bottom: 15px;">
|
322 |
+
<strong>Eevery Text Imaginator: FLUX</strong>
|
323 |
+
</h2>
|
324 |
+
|
325 |
+
<p style="text-align:center;">
|
326 |
+
This tool generates two final images from a prompt
|
327 |
+
containing placeholders <code><text1></code>, <code><text2></code>, <code><text3></code>.
|
328 |
+
If your chosen text is purely English, it will appear directly;
|
329 |
+
otherwise it becomes random letters in the initial phase.
|
330 |
+
</p>
|
331 |
+
|
332 |
+
<hr style="margin: 15px 0;">
|
|
|
|
|
|
|
333 |
"""
|
334 |
)
|
335 |
|
336 |
+
# 5 example prompts (focusing on <text1>, <text2>)
|
337 |
examples = [
|
338 |
[
|
339 |
+
"On a grand stage, <text1> in big letters and <text2> on the left side",
|
340 |
+
"HELLO", "WORLD", ""
|
341 |
],
|
342 |
[
|
343 |
+
"Futuristic neon sign with <text1>, plus <text2> near the bottom",
|
344 |
+
"WELCOME", "SALE", ""
|
345 |
],
|
346 |
[
|
347 |
+
"A classical poster reading <text1> in bold, <text2> as a subtitle",
|
348 |
+
"MUSICFEST", "2025", ""
|
349 |
],
|
350 |
[
|
351 |
+
"In a cartoon style, a speech bubble with <text1> and another text <text2>",
|
352 |
+
"HI!", "OhYes", ""
|
353 |
],
|
354 |
[
|
355 |
+
"Large billboard featuring <text1>, smaller text <text2> in the corner",
|
356 |
+
"ANNOUNCEMENT", "OPENNOW", ""
|
357 |
+
],
|
358 |
]
|
359 |
|
360 |
with gr.Row():
|
361 |
with gr.Column():
|
362 |
+
with gr.Box():
|
363 |
+
prompt_input = gr.Textbox(
|
364 |
+
lines=3,
|
365 |
+
label="Prompt (Korean or English)",
|
366 |
+
placeholder="On a grand stage, <text1> in big letters..."
|
367 |
+
)
|
368 |
+
final_text1 = gr.Textbox(
|
369 |
+
label="New Text #1 (Required)",
|
370 |
+
placeholder="Example: HELLO or 안녕하세요"
|
371 |
+
)
|
372 |
+
final_text2 = gr.Textbox(
|
373 |
+
label="New Text #2 (Optional)",
|
374 |
+
placeholder="Example: WORLD or 반갑습니다"
|
375 |
+
)
|
376 |
+
final_text3 = gr.Textbox(
|
377 |
+
label="New Text #3 (Optional)",
|
378 |
+
placeholder="(Leave blank if not used)"
|
379 |
+
)
|
380 |
+
|
381 |
+
with gr.Accordion("Advanced Settings (optional)", open=False):
|
382 |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512)
|
383 |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512)
|
384 |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
|
385 |
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.5, value=3.5)
|
386 |
+
seed = gr.Number(label="Seed", value=1234, precision=0)
|
387 |
|
388 |
+
run_btn = gr.Button("Generate 2 Final Images", variant="primary")
|
389 |
|
390 |
gr.Examples(
|
391 |
examples=examples,
|
392 |
inputs=[prompt_input, final_text1, final_text2, final_text3],
|
393 |
+
label="Example Prompts"
|
394 |
)
|
395 |
|
396 |
with gr.Column():
|
397 |
+
final_image_output1 = gr.Image(label="Final Image #1", type="pil")
|
398 |
+
final_image_output2 = gr.Image(label="Final Image #2", type="pil")
|
399 |
|
400 |
+
# We only display the 2 final images, not the initial random image
|
401 |
run_btn.click(
|
402 |
fn=run_process,
|
403 |
inputs=[
|
|
|
411 |
scale,
|
412 |
seed
|
413 |
],
|
414 |
+
outputs=[final_image_output1, final_image_output2]
|
415 |
)
|
416 |
|
417 |
demo.launch(max_threads=20)
|