File size: 8,147 Bytes
73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 17d7bf7 73c3334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import streamlit as st
import spacy
import PyPDF2
import pandas as pd
import time
from datetime import datetime
import openai
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from collections import defaultdict
class ResumeProcessor:
def __init__(self):
self.nlp = spacy.load("en_core_web_lg")
self.vectorizer = TfidfVectorizer(stop_words='english')
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
def extract_text_from_pdf(self, file):
reader = PyPDF2.PdfReader(file)
return ' '.join([page.extract_text() for page in reader.pages])
def preprocess_text(self, text):
doc = self.nlp(text)
tokens = [token.lemma_.lower() for token in doc
if not token.is_stop and not token.is_punct]
return ' '.join(tokens)
def extract_entities(self, text):
doc = self.nlp(text)
entities = defaultdict(set)
for ent in doc.ents:
if ent.label_ in ['ORG', 'PERSON', 'GPE', 'EDU', 'SKILL']:
entities[ent.label_].add(ent.text.lower())
return entities
def calculate_similarity(self, jd_text, resumes):
processed_jd = self.preprocess_text(jd_text)
processed_resumes = [self.preprocess_text(resume) for resume in resumes]
tfidf_matrix = self.vectorizer.fit_transform([processed_jd] + processed_resumes)
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
jd_embedding = self.sentence_model.encode([processed_jd])
resume_embeddings = self.sentence_model.encode(processed_resumes)
semantic_scores = cosine_similarity(jd_embedding, resume_embeddings)[0]
jd_entities = self.extract_entities(jd_text)
entity_scores = []
for resume in resumes:
resume_entities = self.extract_entities(resume)
score = sum(len(jd_entities[key] & resume_entities[key])
for key in jd_entities) / max(len(jd_entities), 1)
entity_scores.append(score)
combined_scores = (tfidf_scores + semantic_scores + entity_scores) / 3
return combined_scores, tfidf_matrix, jd_entities
def get_top_terms(vector, feature_names, top_n=10):
if vector.nnz == 0:
return []
indices = vector.indices
data = vector.data
sorted_terms = sorted(zip(indices, data), key=lambda x: -x[1])
return [feature_names[idx] for idx, _ in sorted_terms[:top_n]]
def generate_llm_feedback(jd, resume):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": f"Job Description:\n{jd}\n\nResume:\n{resume}\n\nProvide brief feedback on resume suitability."
}]
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating feedback: {str(e)}"
def main():
st.set_page_config(page_title="Resume Ranker Pro", layout="wide")
st.title("π AI-Powered Resume Ranking System 2.0")
if 'metrics' not in st.session_state:
st.session_state.metrics = {
'total_processed': 0,
'avg_time': 0,
'last_processed': None,
'errors': []
}
processor = ResumeProcessor()
with st.sidebar:
st.header("βοΈ Configuration")
jd_file = st.file_uploader("Job Description (TXT)", type="txt")
resume_files = st.file_uploader("Resumes (PDF/TXT)",
type=["pdf", "txt"],
accept_multiple_files=True)
st.divider()
st.header("π AIOPS Monitoring")
st.metric("Total Processed", st.session_state.metrics['total_processed'])
st.metric("Avg Processing Time", f"{st.session_state.metrics['avg_time']:.2f}s")
st.metric("Last Processed", st.session_state.metrics['last_processed'] or "Never")
st.divider()
st.header("π§ MLOps Settings")
st.write("Model Version: 1.1.0")
if st.button("Retrain Model (Mock)"):
with st.spinner("Simulating retraining..."):
time.sleep(2)
st.success("Model updated to v1.1.1")
st.divider()
llm_enabled = st.checkbox("Enable LLM Feedback")
# Get OpenAI key from environment variable
openai_key = os.environ.get("OPENAI_API_KEY")
# Only show API key input if not running in production environment
if not openai_key and llm_enabled:
openai_key = st.text_input("OpenAI API Key", type="password")
if llm_enabled:
openai.api_key = openai_key
if jd_file and resume_files:
start_time = time.time()
try:
jd_text = jd_file.read().decode()
resume_texts = []
for file in resume_files:
if file.type == "application/pdf":
text = processor.extract_text_from_pdf(file)
else:
text = file.read().decode()
resume_texts.append(text)
scores, tfidf_matrix, jd_entities = processor.calculate_similarity(jd_text, resume_texts)
feature_names = processor.vectorizer.get_feature_names_out()
jd_top_terms = get_top_terms(tfidf_matrix[0], feature_names)
results = []
for i, (score, text) in enumerate(zip(scores, resume_texts)):
resume_vector = tfidf_matrix[i+1]
resume_terms = get_top_terms(resume_vector, feature_names)
common_terms = set(jd_top_terms) & set(resume_terms)
resume_entities = processor.extract_entities(text)
matched_entities = []
for key in jd_entities:
matched_entities.extend(jd_entities[key] & resume_entities.get(key, set()))
results.append({
"Filename": resume_files[i].name,
"Score": score,
"Top Terms": ", ".join(common_terms),
"Matched Entities": ", ".join(matched_entities),
"Resume Text": text
})
df = pd.DataFrame(results).sort_values("Score", ascending=False)
st.subheader("π Ranking Results")
st.dataframe(
df[["Filename", "Score", "Top Terms", "Matched Entities"]],
column_config={
"Score": st.column_config.ProgressColumn(
format="%.4f",
min_value=0,
max_value=1.0
)
},
use_container_width=True,
hide_index=True
)
if llm_enabled and openai_key:
st.subheader("π§ LLM Feedback")
for idx, row in df.iterrows():
with st.expander(f"Feedback for {row['Filename']}"):
feedback = generate_llm_feedback(jd_text, row['Resume Text'])
st.write(feedback)
processing_time = time.time() - start_time
st.session_state.metrics['total_processed'] += len(resume_files)
st.session_state.metrics['avg_time'] = (
st.session_state.metrics['avg_time'] * (st.session_state.metrics['total_processed'] - len(resume_files)) +
processing_time
) / st.session_state.metrics['total_processed']
st.session_state.metrics['last_processed'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
except Exception as e:
st.error(f"Error processing files: {str(e)}")
st.session_state.metrics['errors'].append(str(e))
if __name__ == "__main__":
main() |