File size: 8,147 Bytes
73c3334
17d7bf7
 
73c3334
17d7bf7
73c3334
 
 
 
 
17d7bf7
73c3334
17d7bf7
73c3334
17d7bf7
73c3334
 
 
17d7bf7
73c3334
 
 
 
 
17d7bf7
73c3334
 
 
 
 
 
 
 
 
 
 
17d7bf7
73c3334
 
 
17d7bf7
73c3334
 
17d7bf7
73c3334
 
 
17d7bf7
73c3334
 
 
 
 
 
 
 
 
 
17d7bf7
73c3334
 
 
 
 
 
 
17d7bf7
73c3334
 
 
 
 
 
 
 
 
 
 
 
17d7bf7
 
73c3334
 
 
 
 
 
 
 
 
 
17d7bf7
73c3334
17d7bf7
 
73c3334
 
17d7bf7
 
 
 
73c3334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d7bf7
73c3334
 
 
 
 
 
17d7bf7
 
73c3334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d7bf7
 
73c3334
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import streamlit as st
import spacy
import PyPDF2
import pandas as pd
import time
from datetime import datetime
import openai
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from collections import defaultdict

class ResumeProcessor:
    def __init__(self):
        self.nlp = spacy.load("en_core_web_lg")
        self.vectorizer = TfidfVectorizer(stop_words='english')
        self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
        
    def extract_text_from_pdf(self, file):
        reader = PyPDF2.PdfReader(file)
        return ' '.join([page.extract_text() for page in reader.pages])

    def preprocess_text(self, text):
        doc = self.nlp(text)
        tokens = [token.lemma_.lower() for token in doc 
                 if not token.is_stop and not token.is_punct]
        return ' '.join(tokens)

    def extract_entities(self, text):
        doc = self.nlp(text)
        entities = defaultdict(set)
        for ent in doc.ents:
            if ent.label_ in ['ORG', 'PERSON', 'GPE', 'EDU', 'SKILL']:
                entities[ent.label_].add(ent.text.lower())
        return entities

    def calculate_similarity(self, jd_text, resumes):
        processed_jd = self.preprocess_text(jd_text)
        processed_resumes = [self.preprocess_text(resume) for resume in resumes]
        
        tfidf_matrix = self.vectorizer.fit_transform([processed_jd] + processed_resumes)
        tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
        
        jd_embedding = self.sentence_model.encode([processed_jd])
        resume_embeddings = self.sentence_model.encode(processed_resumes)
        semantic_scores = cosine_similarity(jd_embedding, resume_embeddings)[0]
        
        jd_entities = self.extract_entities(jd_text)
        entity_scores = []
        for resume in resumes:
            resume_entities = self.extract_entities(resume)
            score = sum(len(jd_entities[key] & resume_entities[key]) 
                      for key in jd_entities) / max(len(jd_entities), 1)
            entity_scores.append(score)
        
        combined_scores = (tfidf_scores + semantic_scores + entity_scores) / 3
        return combined_scores, tfidf_matrix, jd_entities

def get_top_terms(vector, feature_names, top_n=10):
    if vector.nnz == 0:
        return []
    indices = vector.indices
    data = vector.data
    sorted_terms = sorted(zip(indices, data), key=lambda x: -x[1])
    return [feature_names[idx] for idx, _ in sorted_terms[:top_n]]

def generate_llm_feedback(jd, resume):
    try:
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[{
                "role": "user",
                "content": f"Job Description:\n{jd}\n\nResume:\n{resume}\n\nProvide brief feedback on resume suitability."
            }]
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error generating feedback: {str(e)}"

def main():
    st.set_page_config(page_title="Resume Ranker Pro", layout="wide")
    st.title("πŸš€ AI-Powered Resume Ranking System 2.0")
    
    if 'metrics' not in st.session_state:
        st.session_state.metrics = {
            'total_processed': 0,
            'avg_time': 0,
            'last_processed': None,
            'errors': []
        }
    
    processor = ResumeProcessor()
    
    with st.sidebar:
        st.header("βš™οΈ Configuration")
        jd_file = st.file_uploader("Job Description (TXT)", type="txt")
        resume_files = st.file_uploader("Resumes (PDF/TXT)", 
                                      type=["pdf", "txt"],
                                      accept_multiple_files=True)
        
        st.divider()
        st.header("πŸ“Š AIOPS Monitoring")
        st.metric("Total Processed", st.session_state.metrics['total_processed'])
        st.metric("Avg Processing Time", f"{st.session_state.metrics['avg_time']:.2f}s")
        st.metric("Last Processed", st.session_state.metrics['last_processed'] or "Never")
        
        st.divider()
        st.header("πŸ”§ MLOps Settings")
        st.write("Model Version: 1.1.0")
        if st.button("Retrain Model (Mock)"):
            with st.spinner("Simulating retraining..."):
                time.sleep(2)
                st.success("Model updated to v1.1.1")
        
        st.divider()
        llm_enabled = st.checkbox("Enable LLM Feedback")
        
        # Get OpenAI key from environment variable
        openai_key = os.environ.get("OPENAI_API_KEY")
        
        # Only show API key input if not running in production environment
        if not openai_key and llm_enabled:
            openai_key = st.text_input("OpenAI API Key", type="password")
        
        if llm_enabled:
            openai.api_key = openai_key

    if jd_file and resume_files:
        start_time = time.time()
        try:
            jd_text = jd_file.read().decode()
            resume_texts = []
            for file in resume_files:
                if file.type == "application/pdf":
                    text = processor.extract_text_from_pdf(file)
                else:
                    text = file.read().decode()
                resume_texts.append(text)
            
            scores, tfidf_matrix, jd_entities = processor.calculate_similarity(jd_text, resume_texts)
            feature_names = processor.vectorizer.get_feature_names_out()
            jd_top_terms = get_top_terms(tfidf_matrix[0], feature_names)
            
            results = []
            for i, (score, text) in enumerate(zip(scores, resume_texts)):
                resume_vector = tfidf_matrix[i+1]
                resume_terms = get_top_terms(resume_vector, feature_names)
                common_terms = set(jd_top_terms) & set(resume_terms)
                resume_entities = processor.extract_entities(text)
                matched_entities = []
                for key in jd_entities:
                    matched_entities.extend(jd_entities[key] & resume_entities.get(key, set()))
                
                results.append({
                    "Filename": resume_files[i].name,
                    "Score": score,
                    "Top Terms": ", ".join(common_terms),
                    "Matched Entities": ", ".join(matched_entities),
                    "Resume Text": text
                })
            
            df = pd.DataFrame(results).sort_values("Score", ascending=False)
            
            st.subheader("πŸ“Š Ranking Results")
            st.dataframe(
                df[["Filename", "Score", "Top Terms", "Matched Entities"]],
                column_config={
                    "Score": st.column_config.ProgressColumn(
                        format="%.4f",
                        min_value=0,
                        max_value=1.0
                    )
                },
                use_container_width=True,
                hide_index=True
            )
            
            if llm_enabled and openai_key:
                st.subheader("🧠 LLM Feedback")
                for idx, row in df.iterrows():
                    with st.expander(f"Feedback for {row['Filename']}"):
                        feedback = generate_llm_feedback(jd_text, row['Resume Text'])
                        st.write(feedback)
            
            processing_time = time.time() - start_time
            st.session_state.metrics['total_processed'] += len(resume_files)
            st.session_state.metrics['avg_time'] = (
                st.session_state.metrics['avg_time'] * (st.session_state.metrics['total_processed'] - len(resume_files)) +
                processing_time
            ) / st.session_state.metrics['total_processed']
            st.session_state.metrics['last_processed'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            
        except Exception as e:
            st.error(f"Error processing files: {str(e)}")
            st.session_state.metrics['errors'].append(str(e))

if __name__ == "__main__":
    main()