Update app.py
Browse files
app.py
CHANGED
@@ -1,174 +1,199 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import spacy
|
|
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
from
|
6 |
-
|
7 |
-
from sklearn.
|
8 |
-
from sklearn.
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
from
|
11 |
-
import mlflow
|
12 |
-
import logging
|
13 |
-
from system_monitor import SystemMonitor # Custom AIOPS module
|
14 |
-
import torch
|
15 |
-
from transformers import pipeline
|
16 |
|
17 |
-
class
|
18 |
def __init__(self):
|
19 |
-
self.nlp = spacy.load("
|
20 |
-
self.
|
21 |
-
self.
|
22 |
-
self.logger = logging.getLogger('mlops')
|
23 |
-
self.llm = pipeline('text-generation', model='gpt2-xl') if torch.cuda.is_available() else None
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
def
|
30 |
-
"""Enhanced entity extraction with custom categories"""
|
31 |
doc = self.nlp(text)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
resume_embed = self.sentence_model.encode([resume_text])[0]
|
45 |
-
semantic_sim = cosine_similarity([jd_embed], [resume_embed])[0][0]
|
46 |
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
]), 'resume_text')
|
64 |
-
])
|
65 |
-
|
66 |
-
model = Pipeline([
|
67 |
-
('preproc', preprocessor),
|
68 |
-
('regressor', GradientBoostingRegressor())
|
69 |
-
])
|
70 |
-
|
71 |
-
model.fit(X, y)
|
72 |
-
mlflow.sklearn.log_model(model, "model")
|
73 |
-
return model
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
def main():
|
88 |
-
st.set_page_config(page_title="
|
89 |
-
st.title("π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
processor =
|
92 |
-
dashboard = MLOpsDashboard()
|
93 |
|
94 |
with st.sidebar:
|
95 |
-
st.header("
|
96 |
-
|
97 |
-
st.metric("Current Load", f"{processor.system_monitor.cpu_usage}% CPU")
|
98 |
-
|
99 |
-
st.header("MLOps Controls")
|
100 |
-
retrain = st.button("Retrain Production Model")
|
101 |
-
if retrain:
|
102 |
-
with st.spinner("Retraining model..."):
|
103 |
-
# Add retraining logic here
|
104 |
-
st.success("Model updated in production!")
|
105 |
-
|
106 |
-
main_col1, main_col2 = st.columns([3, 2])
|
107 |
-
|
108 |
-
with main_col1:
|
109 |
-
st.header("Upload Files")
|
110 |
-
jd_file = st.file_uploader("Job Description (TXT/PDF)", type=["txt", "pdf"])
|
111 |
resume_files = st.file_uploader("Resumes (PDF/TXT)",
|
112 |
type=["pdf", "txt"],
|
113 |
accept_multiple_files=True)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
})
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
processor.logger.error(f"Processing error: {str(e)}")
|
159 |
-
st.error(f"System error: {str(e)}")
|
160 |
-
|
161 |
-
with main_col2:
|
162 |
-
st.header("Model Explainability")
|
163 |
-
if 'df' in locals():
|
164 |
-
st.plotly_chart(create_shap_plot(df)) # Implement SHAP visualization
|
165 |
-
st.download_button("Export Evaluation Report",
|
166 |
-
generate_report(df),
|
167 |
-
file_name="ranking_report.pdf")
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
if __name__ == "__main__":
|
174 |
-
main()
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import spacy
|
4 |
+
import PyPDF2
|
5 |
import pandas as pd
|
6 |
+
import time
|
7 |
+
from datetime import datetime
|
8 |
+
import openai
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
+
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
class ResumeProcessor:
|
15 |
def __init__(self):
|
16 |
+
self.nlp = spacy.load("en_core_web_lg")
|
17 |
+
self.vectorizer = TfidfVectorizer(stop_words='english')
|
18 |
+
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
|
19 |
|
20 |
+
def extract_text_from_pdf(self, file):
|
21 |
+
reader = PyPDF2.PdfReader(file)
|
22 |
+
return ' '.join([page.extract_text() for page in reader.pages])
|
23 |
+
|
24 |
+
def preprocess_text(self, text):
|
|
|
25 |
doc = self.nlp(text)
|
26 |
+
tokens = [token.lemma_.lower() for token in doc
|
27 |
+
if not token.is_stop and not token.is_punct]
|
28 |
+
return ' '.join(tokens)
|
29 |
+
|
30 |
+
def extract_entities(self, text):
|
31 |
+
doc = self.nlp(text)
|
32 |
+
entities = defaultdict(set)
|
33 |
+
for ent in doc.ents:
|
34 |
+
if ent.label_ in ['ORG', 'PERSON', 'GPE', 'EDU', 'SKILL']:
|
35 |
+
entities[ent.label_].add(ent.text.lower())
|
36 |
+
return entities
|
37 |
|
38 |
+
def calculate_similarity(self, jd_text, resumes):
|
39 |
+
processed_jd = self.preprocess_text(jd_text)
|
40 |
+
processed_resumes = [self.preprocess_text(resume) for resume in resumes]
|
41 |
|
42 |
+
tfidf_matrix = self.vectorizer.fit_transform([processed_jd] + processed_resumes)
|
43 |
+
tfidf_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])[0]
|
|
|
|
|
44 |
|
45 |
+
jd_embedding = self.sentence_model.encode([processed_jd])
|
46 |
+
resume_embeddings = self.sentence_model.encode(processed_resumes)
|
47 |
+
semantic_scores = cosine_similarity(jd_embedding, resume_embeddings)[0]
|
48 |
|
49 |
+
jd_entities = self.extract_entities(jd_text)
|
50 |
+
entity_scores = []
|
51 |
+
for resume in resumes:
|
52 |
+
resume_entities = self.extract_entities(resume)
|
53 |
+
score = sum(len(jd_entities[key] & resume_entities[key])
|
54 |
+
for key in jd_entities) / max(len(jd_entities), 1)
|
55 |
+
entity_scores.append(score)
|
56 |
+
|
57 |
+
combined_scores = (tfidf_scores + semantic_scores + entity_scores) / 3
|
58 |
+
return combined_scores, tfidf_matrix, jd_entities
|
59 |
|
60 |
+
def get_top_terms(vector, feature_names, top_n=10):
|
61 |
+
if vector.nnz == 0:
|
62 |
+
return []
|
63 |
+
indices = vector.indices
|
64 |
+
data = vector.data
|
65 |
+
sorted_terms = sorted(zip(indices, data), key=lambda x: -x[1])
|
66 |
+
return [feature_names[idx] for idx, _ in sorted_terms[:top_n]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
def generate_llm_feedback(jd, resume):
|
69 |
+
try:
|
70 |
+
response = openai.ChatCompletion.create(
|
71 |
+
model="gpt-3.5-turbo",
|
72 |
+
messages=[{
|
73 |
+
"role": "user",
|
74 |
+
"content": f"Job Description:\n{jd}\n\nResume:\n{resume}\n\nProvide brief feedback on resume suitability."
|
75 |
+
}]
|
76 |
+
)
|
77 |
+
return response.choices[0].message.content
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error generating feedback: {str(e)}"
|
80 |
|
81 |
def main():
|
82 |
+
st.set_page_config(page_title="Resume Ranker Pro", layout="wide")
|
83 |
+
st.title("π AI-Powered Resume Ranking System 2.0")
|
84 |
+
|
85 |
+
if 'metrics' not in st.session_state:
|
86 |
+
st.session_state.metrics = {
|
87 |
+
'total_processed': 0,
|
88 |
+
'avg_time': 0,
|
89 |
+
'last_processed': None,
|
90 |
+
'errors': []
|
91 |
+
}
|
92 |
|
93 |
+
processor = ResumeProcessor()
|
|
|
94 |
|
95 |
with st.sidebar:
|
96 |
+
st.header("βοΈ Configuration")
|
97 |
+
jd_file = st.file_uploader("Job Description (TXT)", type="txt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
resume_files = st.file_uploader("Resumes (PDF/TXT)",
|
99 |
type=["pdf", "txt"],
|
100 |
accept_multiple_files=True)
|
101 |
|
102 |
+
st.divider()
|
103 |
+
st.header("π AIOPS Monitoring")
|
104 |
+
st.metric("Total Processed", st.session_state.metrics['total_processed'])
|
105 |
+
st.metric("Avg Processing Time", f"{st.session_state.metrics['avg_time']:.2f}s")
|
106 |
+
st.metric("Last Processed", st.session_state.metrics['last_processed'] or "Never")
|
107 |
+
|
108 |
+
st.divider()
|
109 |
+
st.header("π§ MLOps Settings")
|
110 |
+
st.write("Model Version: 1.1.0")
|
111 |
+
if st.button("Retrain Model (Mock)"):
|
112 |
+
with st.spinner("Simulating retraining..."):
|
113 |
+
time.sleep(2)
|
114 |
+
st.success("Model updated to v1.1.1")
|
115 |
+
|
116 |
+
st.divider()
|
117 |
+
llm_enabled = st.checkbox("Enable LLM Feedback")
|
118 |
+
|
119 |
+
# Get OpenAI key from environment variable
|
120 |
+
openai_key = os.environ.get("OPENAI_API_KEY")
|
121 |
+
|
122 |
+
# Only show API key input if not running in production environment
|
123 |
+
if not openai_key and llm_enabled:
|
124 |
+
openai_key = st.text_input("OpenAI API Key", type="password")
|
125 |
+
|
126 |
+
if llm_enabled:
|
127 |
+
openai.api_key = openai_key
|
128 |
+
|
129 |
+
if jd_file and resume_files:
|
130 |
+
start_time = time.time()
|
131 |
+
try:
|
132 |
+
jd_text = jd_file.read().decode()
|
133 |
+
resume_texts = []
|
134 |
+
for file in resume_files:
|
135 |
+
if file.type == "application/pdf":
|
136 |
+
text = processor.extract_text_from_pdf(file)
|
137 |
+
else:
|
138 |
+
text = file.read().decode()
|
139 |
+
resume_texts.append(text)
|
140 |
+
|
141 |
+
scores, tfidf_matrix, jd_entities = processor.calculate_similarity(jd_text, resume_texts)
|
142 |
+
feature_names = processor.vectorizer.get_feature_names_out()
|
143 |
+
jd_top_terms = get_top_terms(tfidf_matrix[0], feature_names)
|
144 |
+
|
145 |
+
results = []
|
146 |
+
for i, (score, text) in enumerate(zip(scores, resume_texts)):
|
147 |
+
resume_vector = tfidf_matrix[i+1]
|
148 |
+
resume_terms = get_top_terms(resume_vector, feature_names)
|
149 |
+
common_terms = set(jd_top_terms) & set(resume_terms)
|
150 |
+
resume_entities = processor.extract_entities(text)
|
151 |
+
matched_entities = []
|
152 |
+
for key in jd_entities:
|
153 |
+
matched_entities.extend(jd_entities[key] & resume_entities.get(key, set()))
|
154 |
|
155 |
+
results.append({
|
156 |
+
"Filename": resume_files[i].name,
|
157 |
+
"Score": score,
|
158 |
+
"Top Terms": ", ".join(common_terms),
|
159 |
+
"Matched Entities": ", ".join(matched_entities),
|
160 |
+
"Resume Text": text
|
161 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
df = pd.DataFrame(results).sort_values("Score", ascending=False)
|
164 |
+
|
165 |
+
st.subheader("π Ranking Results")
|
166 |
+
st.dataframe(
|
167 |
+
df[["Filename", "Score", "Top Terms", "Matched Entities"]],
|
168 |
+
column_config={
|
169 |
+
"Score": st.column_config.ProgressColumn(
|
170 |
+
format="%.4f",
|
171 |
+
min_value=0,
|
172 |
+
max_value=1.0
|
173 |
+
)
|
174 |
+
},
|
175 |
+
use_container_width=True,
|
176 |
+
hide_index=True
|
177 |
+
)
|
178 |
+
|
179 |
+
if llm_enabled and openai_key:
|
180 |
+
st.subheader("π§ LLM Feedback")
|
181 |
+
for idx, row in df.iterrows():
|
182 |
+
with st.expander(f"Feedback for {row['Filename']}"):
|
183 |
+
feedback = generate_llm_feedback(jd_text, row['Resume Text'])
|
184 |
+
st.write(feedback)
|
185 |
+
|
186 |
+
processing_time = time.time() - start_time
|
187 |
+
st.session_state.metrics['total_processed'] += len(resume_files)
|
188 |
+
st.session_state.metrics['avg_time'] = (
|
189 |
+
st.session_state.metrics['avg_time'] * (st.session_state.metrics['total_processed'] - len(resume_files)) +
|
190 |
+
processing_time
|
191 |
+
) / st.session_state.metrics['total_processed']
|
192 |
+
st.session_state.metrics['last_processed'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
st.error(f"Error processing files: {str(e)}")
|
196 |
+
st.session_state.metrics['errors'].append(str(e))
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
+
main()
|