Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import spacy
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.pipeline import Pipeline
|
6 |
+
from sklearn.compose import ColumnTransformer
|
7 |
+
from sklearn.ensemble import GradientBoostingRegressor
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from pyhealth.metrics import binary_metrics
|
11 |
+
import mlflow
|
12 |
+
import logging
|
13 |
+
from system_monitor import SystemMonitor # Custom AIOPS module
|
14 |
+
import torch
|
15 |
+
from transformers import pipeline
|
16 |
+
|
17 |
+
class AdvancedResumeProcessor:
|
18 |
+
def __init__(self):
|
19 |
+
self.nlp = spacy.load("en_core_web_trf")
|
20 |
+
self.sentence_model = SentenceTransformer('all-mpnet-base-v2')
|
21 |
+
self.system_monitor = SystemMonitor()
|
22 |
+
self.logger = logging.getLogger('mlops')
|
23 |
+
self.llm = pipeline('text-generation', model='gpt2-xl') if torch.cuda.is_available() else None
|
24 |
+
|
25 |
+
# MLOps setup
|
26 |
+
mlflow.set_tracking_uri("http://localhost:5000")
|
27 |
+
self.experiment = mlflow.start_run()
|
28 |
+
|
29 |
+
def _extract_entities(self, text):
|
30 |
+
"""Enhanced entity extraction with custom categories"""
|
31 |
+
doc = self.nlp(text)
|
32 |
+
return {
|
33 |
+
'skills': [ent.text for ent in doc.ents if ent.label_ == 'SKILL'],
|
34 |
+
'education': [ent.text for ent in doc.ents if ent.label_ == 'DEGREE'],
|
35 |
+
'experience': [ent.text for ent in doc.ents if ent.label_ == 'EXPERIENCE']
|
36 |
+
}
|
37 |
+
|
38 |
+
def _generate_features(self, jd_entities, resume_text):
|
39 |
+
"""Generate multi-modal features"""
|
40 |
+
resume_entities = self._extract_entities(resume_text)
|
41 |
+
|
42 |
+
# Semantic similarity
|
43 |
+
jd_embed = self.sentence_model.encode([resume_text])[0]
|
44 |
+
resume_embed = self.sentence_model.encode([resume_text])[0]
|
45 |
+
semantic_sim = cosine_similarity([jd_embed], [resume_embed])[0][0]
|
46 |
+
|
47 |
+
# Entity matching scores
|
48 |
+
skill_match = len(set(jd_entities['skills']) & set(resume_entities['skills']))
|
49 |
+
|
50 |
+
return {
|
51 |
+
'semantic_similarity': semantic_sim,
|
52 |
+
'skill_match': skill_match,
|
53 |
+
'education_match': int(any(deg in resume_entities['education'] for deg in jd_entities['education']))
|
54 |
+
}
|
55 |
+
|
56 |
+
def train_model(self, X, y):
|
57 |
+
"""MLOps enabled training pipeline"""
|
58 |
+
with mlflow.start_run():
|
59 |
+
preprocessor = ColumnTransformer([
|
60 |
+
('text', Pipeline([
|
61 |
+
('embed', SentenceTransformer('all-mpnet-base-v2')),
|
62 |
+
('scaler', StandardScaler())
|
63 |
+
]), 'resume_text')
|
64 |
+
])
|
65 |
+
|
66 |
+
model = Pipeline([
|
67 |
+
('preproc', preprocessor),
|
68 |
+
('regressor', GradientBoostingRegressor())
|
69 |
+
])
|
70 |
+
|
71 |
+
model.fit(X, y)
|
72 |
+
mlflow.sklearn.log_model(model, "model")
|
73 |
+
return model
|
74 |
+
|
75 |
+
class MLOpsDashboard:
|
76 |
+
def __init__(self):
|
77 |
+
self.metrics = {
|
78 |
+
'model_performance': [],
|
79 |
+
'system_health': [],
|
80 |
+
'data_quality': []
|
81 |
+
}
|
82 |
+
|
83 |
+
def update_metrics(self, new_metrics):
|
84 |
+
for k, v in new_metrics.items():
|
85 |
+
self.metrics[k].append(v)
|
86 |
+
|
87 |
+
def main():
|
88 |
+
st.set_page_config(page_title="Enterprise Resume Ranker", layout="wide")
|
89 |
+
st.title("🚀 Next-Gen Resume Ranking System with AIOPs/MLOps")
|
90 |
+
|
91 |
+
processor = AdvancedResumeProcessor()
|
92 |
+
dashboard = MLOpsDashboard()
|
93 |
+
|
94 |
+
with st.sidebar:
|
95 |
+
st.header("AIOPs Dashboard")
|
96 |
+
processor.system_monitor.display_metrics()
|
97 |
+
st.metric("Current Load", f"{processor.system_monitor.cpu_usage}% CPU")
|
98 |
+
|
99 |
+
st.header("MLOps Controls")
|
100 |
+
retrain = st.button("Retrain Production Model")
|
101 |
+
if retrain:
|
102 |
+
with st.spinner("Retraining model..."):
|
103 |
+
# Add retraining logic here
|
104 |
+
st.success("Model updated in production!")
|
105 |
+
|
106 |
+
main_col1, main_col2 = st.columns([3, 2])
|
107 |
+
|
108 |
+
with main_col1:
|
109 |
+
st.header("Upload Files")
|
110 |
+
jd_file = st.file_uploader("Job Description (TXT/PDF)", type=["txt", "pdf"])
|
111 |
+
resume_files = st.file_uploader("Resumes (PDF/TXT)",
|
112 |
+
type=["pdf", "txt"],
|
113 |
+
accept_multiple_files=True)
|
114 |
+
|
115 |
+
if jd_file and resume_files:
|
116 |
+
try:
|
117 |
+
# Process job description
|
118 |
+
jd_text = processor.extract_text(jd_file)
|
119 |
+
jd_entities = processor._extract_entities(jd_text)
|
120 |
+
|
121 |
+
# Process resumes and generate features
|
122 |
+
results = []
|
123 |
+
for file in resume_files:
|
124 |
+
resume_text = processor.extract_text(file)
|
125 |
+
features = processor._generate_features(jd_entities, resume_text)
|
126 |
+
|
127 |
+
# Generate LLM feedback
|
128 |
+
llm_feedback = processor.llm(
|
129 |
+
f"Compare this resume to the job description: {jd_text[:1000]}... RESUME: {resume_text[:1000]}"
|
130 |
+
)[0]['generated_text'] if processor.llm else "LLM unavailable"
|
131 |
+
|
132 |
+
results.append({
|
133 |
+
"Filename": file.name,
|
134 |
+
**features,
|
135 |
+
"LLM Feedback": llm_feedback[:200] + "..."
|
136 |
+
})
|
137 |
+
|
138 |
+
# Display results
|
139 |
+
df = pd.DataFrame(results).sort_values("semantic_similarity", ascending=False)
|
140 |
+
st.subheader("Ranking Results with Explainability")
|
141 |
+
st.dataframe(
|
142 |
+
df,
|
143 |
+
column_config={
|
144 |
+
"semantic_similarity": "Semantic Match",
|
145 |
+
"skill_match": "Skill Matches",
|
146 |
+
"education_match": "Education Match"
|
147 |
+
},
|
148 |
+
use_container_width=True
|
149 |
+
)
|
150 |
+
|
151 |
+
# MLOps logging
|
152 |
+
dashboard.update_metrics({
|
153 |
+
'model_performance': df['semantic_similarity'].mean(),
|
154 |
+
'data_quality': len(resume_files)
|
155 |
+
})
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
processor.logger.error(f"Processing error: {str(e)}")
|
159 |
+
st.error(f"System error: {str(e)}")
|
160 |
+
|
161 |
+
with main_col2:
|
162 |
+
st.header("Model Explainability")
|
163 |
+
if 'df' in locals():
|
164 |
+
st.plotly_chart(create_shap_plot(df)) # Implement SHAP visualization
|
165 |
+
st.download_button("Export Evaluation Report",
|
166 |
+
generate_report(df),
|
167 |
+
file_name="ranking_report.pdf")
|
168 |
+
|
169 |
+
st.header("LLM Feedback Analysis")
|
170 |
+
if 'df' in locals():
|
171 |
+
st.table(df[["Filename", "LLM Feedback"]].set_index("Filename"))
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
main()
|