File size: 63,378 Bytes
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c269360
5d85dd3
 
91072fd
5d85dd3
 
 
2ee8bb5
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee8bb5
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989593a
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989593a
5d85dd3
 
 
 
2ee8bb5
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
4244152
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee8bb5
5d85dd3
2ee8bb5
5d85dd3
2ee8bb5
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee8bb5
 
1c562ea
 
 
 
 
 
 
 
 
5d85dd3
4244152
 
2ee8bb5
4244152
 
5d85dd3
4244152
 
5d85dd3
2ee8bb5
fc5bfde
4cf379e
4244152
 
5d85dd3
 
da463b3
2c7bac7
5d85dd3
 
 
 
 
 
 
 
 
 
2ee8bb5
5d85dd3
2ee8bb5
5d85dd3
 
 
 
 
 
 
 
 
2c7bac7
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536959
5d85dd3
2536959
 
12c2548
 
5d85dd3
 
fc5bfde
5d85dd3
 
 
 
 
 
 
 
 
2237cd0
5d85dd3
 
 
 
 
737741b
 
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee8bb5
4cf379e
f2c97e8
4cf379e
f2c97e8
4cf379e
 
 
 
 
 
 
2ee8bb5
 
4cf379e
 
 
 
 
 
f2eaacb
4cf379e
 
 
 
 
 
 
 
 
5d85dd3
 
4cf379e
5d85dd3
 
 
 
 
 
 
9197baf
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee8bb5
5d85dd3
 
2ee8bb5
5d85dd3
 
 
 
 
2ee8bb5
 
4cf379e
2d20c9f
4cf379e
2ee8bb5
4cf379e
5d85dd3
2ee8bb5
7a9acb3
5d85dd3
 
 
 
 
 
 
 
 
 
 
91072fd
395d233
5d85dd3
395d233
5d85dd3
79610f5
 
5a87210
5d85dd3
 
 
 
 
 
 
e982d47
aa975d0
0b4b4f5
aa975d0
 
4411e98
5d85dd3
4cf379e
 
 
1464def
 
29290cf
 
737741b
29290cf
737741b
1464def
 
737741b
1464def
5d85dd3
4dfaa8f
5d85dd3
 
 
d032714
4c2035a
5d85dd3
6f43f77
5d85dd3
 
 
 
 
 
 
 
6874d0a
5d85dd3
 
 
 
 
d032714
5d85dd3
 
 
07fe916
5d85dd3
9197baf
5d85dd3
 
 
827e23a
5d85dd3
 
 
827e23a
5d85dd3
 
2ce5f76
5d85dd3
 
 
 
 
 
 
 
 
2ce5f76
ea7e03a
 
 
 
 
 
 
 
975fb65
 
2ce5f76
 
206e64b
5d85dd3
 
 
 
 
32c422b
c882b54
ae2fe69
ea7e03a
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
7a99bbe
5d85dd3
 
 
 
 
 
 
 
 
 
 
b0967ee
2536959
5d85dd3
c3cc51c
5d85dd3
 
 
ea7e03a
 
 
 
 
 
7a99bbe
4c2035a
 
 
 
 
 
ba48eae
4c2035a
7a99bbe
 
60ed6b5
d18440b
7a99bbe
 
6ba65e0
7a99bbe
 
 
6ba65e0
a0dc8c3
 
 
 
 
 
7a99bbe
4ff4abd
 
 
 
 
7a99bbe
 
de59377
c3cc51c
4f9528c
32c422b
d3bb687
 
 
 
2c7bac7
d61da95
 
12e66a8
2951e1e
975fb65
a413aa4
e660fbb
d3bb687
 
 
2951e1e
e660fbb
 
2951e1e
a413aa4
 
 
 
 
d3bb687
 
 
a413aa4
 
 
 
c3cc51c
a413aa4
 
 
 
 
d3bb687
c3cc51c
 
 
 
 
 
4f9528c
c3cc51c
d3bb687
 
4f9528c
d3bb687
c3cc51c
 
4f9528c
c3cc51c
d3bb687
 
4f9528c
 
 
 
 
 
 
 
 
 
d3bb687
bb2c36c
2c7bac7
 
7dcbfb9
2c7bac7
7b0ae76
 
2c7bac7
f160c87
 
2d8636f
2c7bac7
 
2d8636f
7dcbfb9
2c7bac7
bb2c36c
2c7bac7
bb2c36c
fef9e6c
 
a3e3c87
fef9e6c
d61da95
 
157c0e2
2d8636f
bb2c36c
562d5b5
f990c62
c3cc51c
6f43f77
 
 
 
f3e3fe5
5d85dd3
 
 
 
 
 
d032714
5d85dd3
 
 
b3fbddc
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fbddc
 
6f41c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8945278
 
 
 
 
e90ca5f
8945278
e90ca5f
8945278
 
 
 
 
 
 
 
 
 
 
 
 
 
b07ad8f
fef9e6c
b07ad8f
 
 
 
 
fef9e6c
b07ad8f
 
 
 
 
257ebed
f160c87
 
 
2d8636f
fce2f40
 
 
6aabceb
 
f160c87
 
 
2d8636f
f160c87
8945278
12e66a8
bb2c36c
 
 
 
 
 
 
 
 
 
5e550ce
fd8eb9e
 
 
 
 
bb2c36c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b0ae76
f98d46b
bb2c36c
5e550ce
bb2c36c
 
 
6f41c03
3f0d02c
 
 
 
b3fbddc
3f0d02c
b3fbddc
 
 
 
 
 
 
 
 
 
 
4dfaa8f
 
 
 
 
b3fbddc
3f0d02c
 
b3fbddc
3f0d02c
b3fbddc
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0ac86
 
 
5d85dd3
895bea6
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0ac86
5d85dd3
 
 
 
 
 
4e37c70
 
 
 
 
 
4caec38
de2190d
 
 
 
4e37c70
 
de2190d
4d4ff7e
de2190d
62bac76
 
de2190d
4e37c70
2ee8bb5
 
5d85dd3
 
de2190d
eb3216e
de2190d
0f7589e
22045c0
12c2548
 
22acfae
12c2548
22acfae
de2190d
5d85dd3
 
737dca9
5d85dd3
 
6d7da38
 
 
 
 
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c422b
a40ebcf
6d7da38
32c422b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7da38
32c422b
 
 
 
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
895bea6
de2190d
 
 
 
 
5d85dd3
 
 
 
 
 
de2190d
 
 
4caec38
4e37c70
0f6806f
6874d0a
 
d6e88f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f6806f
f6a8e5c
989593a
 
 
 
 
 
 
 
 
63e206e
a413aa4
f3e3fe5
 
 
 
 
c0b8158
2951e1e
e660fbb
 
a413aa4
63e206e
f6a8e5c
5d85dd3
 
 
 
 
 
 
63e206e
f6a8e5c
5d85dd3
 
 
 
 
 
 
63e206e
8945278
 
f160c87
157c0e2
a3e3c87
6f41c03
556313a
890c4f1
3fa6d0e
 
 
c3cbd76
de796ca
 
556313a
a40ebcf
5438cb0
3fa6d0e
25e4e4d
 
 
104e8e4
 
556313a
c3cbd76
6f41c03
5d85dd3
 
837be50
5d85dd3
8a51390
5d85dd3
 
 
 
 
 
 
 
 
dcaeae7
 
 
5d85dd3
 
 
dcaeae7
 
 
5d85dd3
1551cee
 
 
5d85dd3
 
 
 
 
 
 
0890acc
 
5d85dd3
0890acc
 
5d85dd3
 
8a51390
5d85dd3
 
 
2c7bac7
e153492
2536959
5d85dd3
2ee8bb5
2c7bac7
5d85dd3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
import gradio as gr
import cv2
from PIL import Image
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
from collections import Counter
import mediapy

#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}

blurin = "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
edge = []
gradient = None
params = { "fnum":0 }
pcolors = []
frame_selected = 0
frames = []
backups = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None

def zip_files(files_in, files_out):
    with ZipFile("depth_result.zip", "w") as zipObj:
        for idx, file in enumerate(files_in):
            zipObj.write(file, file.split("/")[-1])
        for idx, file in enumerate(files_out):
            zipObj.write(file, file.split("/")[-1])
    return "depth_result.zip"

def create_video(frames, fps, type):
    print("building video result")
    imgs = []
    for j, img in enumerate(frames):
        imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))

    mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
    return type + "_result.mp4"

@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
    return model.infer_image(image)
    
#def predict_depth(model, image):
#    return model(image)["depth"]

def make_video(video_path, outdir='./vis_video_depth', encoder='vits', blur_data=blurin, o=1, b=32):
    if encoder not in ["vitl","vitb","vits","vitg"]:
        encoder = "vits"

    model_name = encoder2name[encoder]
    model = DepthAnythingV2(**model_configs[encoder])
    filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
    state_dict = torch.load(filepath, map_location="cpu")
    model.load_state_dict(state_dict)
    model = model.to(DEVICE).eval()

    #mapper = {"vits":"small","vitb":"base","vitl":"large"}
    # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
    # Define path for temporary processed frames
    #temp_frame_dir = tempfile.mkdtemp()
    
    #margin_width = 50
    #to_tensor_transform = transforms.ToTensor()

    #DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
    #depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
    
    # total_params = sum(param.numel() for param in depth_anything.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
    
    #transform = Compose([
    #    Resize(
    #        width=518,
    #        height=518,
    #        resize_target=False,
    #        keep_aspect_ratio=True,
    #        ensure_multiple_of=14,
    #        resize_method='lower_bound',
    #        image_interpolation_method=cv2.INTER_CUBIC,
    #    ),
    #    NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    #    PrepareForNet(),
    #])

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    # os.makedirs(outdir, exist_ok=True)
    global masks
    
    for k, filename in enumerate(filenames):
        file_size = os.path.getsize(filename)/1024/1024
        if file_size > 128.0:
            print(f'File size of {filename} larger than 128Mb, sorry!')
            return filename
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        if frame_rate < 1:
            frame_rate = 1
        cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f'frames: {cframes}, fps: {frame_rate}')
        # output_width = frame_width * 2 + margin_width
        
        #filename = os.path.basename(filename)
        # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
        #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
        #    output_path = tmpfile.name
        #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
        #fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
        
        count = 0
        n = 0
        depth_frames = []
        orig_frames = []
        backup_frames = []
        thumbnail_old = []

        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break
            else:
                print(count)

            frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
            frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
            #frame = transform({'image': frame})['image']
            #frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
            #raw_frame_bg = cv2.medianBlur(raw_frame, 255)

            #
            depth = predict_depth(raw_frame[:, :, ::-1], model)
            depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
            #
            
            #depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
            #depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
            #depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            #depth = depth.cpu().numpy().astype(np.uint8)
            #depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
            #depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)

            # Remove white border around map:
            # define lower and upper limits of white
            #white_lo = np.array([250,250,250])
            #white_hi = np.array([255,255,255])
            # mask image to only select white
            mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]], 250, 255)
            # change image to black where we found white
            depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]][mask>0] = 0

            mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]], 192, 255)
            depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 192

            depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
            # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
            # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
            
            # out.write(combined_frame)
            # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
            # cv2.imwrite(frame_path, combined_frame)

            #raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
            #raw_frame[:, :, 3] = 255

            if cframes < 16:
              thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
              if len(thumbnail_old) > 0:
                  diff = thumbnail - thumbnail_old
                  #print(diff)
                  c = Counter(diff)
                  value, cc = c.most_common()[0]
                  if value == 0 and cc > int(16*32*0.8):
                      count += 1
                      continue
              thumbnail_old = thumbnail

            blur_frame = blur_image(raw_frame, depth_color, blur_data)

            # encoding depth within original video
            blur_frame = (round(blur_frame / 17) * 17).astype(np.uint8)
            depth_r = round(depth_gray / 17).astype(np.uint8)
            # may use green channel for 16 levels of opacity
            depth_b = depth_gray - depth_r * 17
            blur_frame[:,:,0] = blur_frame[:,:,0] + depth_r
            # blur_frame[:,:,1] = blur_frame[:,:,1] + opacity_g
            blur_frame[:,:,2] = blur_frame[:,:,2] + depth_b
            
            cv2.imwrite(f"f{count}.jpg", blur_frame)
            orig_frames.append(f"f{count}.jpg")

            cv2.imwrite(f"f{count}_.jpg", blur_frame)
            backup_frames.append(f"f{count}_.jpg")
            
            cv2.imwrite(f"f{count}_dmap.jpg", depth_color)
            depth_frames.append(f"f{count}_dmap.jpg")

            depth_gray = seg_frame(depth_gray, o, b) + 128
            #print(depth_gray[depth_gray>128]-128)

            cv2.imwrite(f"f{count}_mask.jpg", depth_gray)
            masks.append(f"f{count}_mask.jpg")            
            count += 1

        final_vid = create_video(orig_frames, frame_rate, "orig")
        depth_vid = create_video(depth_frames, frame_rate, "depth")
            
        final_zip = zip_files(orig_frames, depth_frames)
        raw_video.release()
        # out.release()
        cv2.destroyAllWindows()

        global gradient
        global frame_selected
        global depths
        global frames
        global backups 
        frames = orig_frames
        backups = backup_frames
        depths = depth_frames

        if depth_color.shape[0] == 2048: #height
            gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
        elif depth_color.shape[0] == 1024:
            gradient = cv2.imread('./gradient.png').astype(np.uint8)
        else:
            gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
        
        return final_vid, final_zip, frames, masks[frame_selected], depths, depth_vid #output_path

def depth_edges_mask(depth):
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask

def pano_depth_to_world_points(depth):
    """
    360 depth to world points
    given 2D depth is an equirectangular projection of a spherical image
    Treat depth as radius
    longitude : -pi to pi
    latitude : -pi/2 to pi/2
    """

    # Convert depth to radius
    radius = (255 - depth.flatten())

    lon = np.linspace(0, np.pi*2, depth.shape[1])
    lat = np.linspace(0, np.pi, depth.shape[0])
    lon, lat = np.meshgrid(lon, lat)
    lon = lon.flatten()
    lat = lat.flatten()

    pts3d = [[0,0,0]]
    uv = [[0,0]]
    nl = [[0,0,0]]
    for i in range(0, 1): #(0,2)
        for j in range(0, 1): #(0,2)
            #rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            #rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
            d_lat = lat + j/2 * np.pi / depth.shape[0]

            nx = np.cos(d_lon) * np.sin(d_lat)
            ny = np.cos(d_lat)
            nz = np.sin(d_lon) * np.sin(d_lat)
            
            # Convert to cartesian coordinates
            x = radius * nx
            y = radius * ny
            z = radius * nz

            pts = np.stack([x, y, z], axis=1)
            uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
            nls = np.stack([-nx, -ny, -nz], axis=1)
            
            pts3d = np.concatenate((pts3d, pts), axis=0)
            uv = np.concatenate((uv, uvs), axis=0)
            nl = np.concatenate((nl, nls), axis=0)
            #print(f'i: {i}, j: {j}')
            j = j+1
        i = i+1
        
    return [pts3d, uv, nl]

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])

def get_mesh(image, depth, blur_data, loadall):
    global depths
    global pcolors
    global frame_selected
    global mesh
    global mesh_n
    global scene
    if loadall == False:
        mesh = []
        mesh_n = []
    fnum = frame_selected

    #print(image[fnum][0])
    #print(depth["composite"])

    depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
    gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
    
    print('depth to gray - ok')
    points = pano_depth_to_world_points(gdepth)
    pts3d = points[0]
    uv = points[1]
    nl = points[2]
    print('radius from depth - ok')

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image
    uvs = uv.reshape(-1, 2)
    #print(uvs)
    #verts = pts3d.reshape(-1, 3)
    verts = [[0,0,0]]
    normals = nl.reshape(-1, 3)
    rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
    colors = rgba.reshape(-1, 4)
    clrs = [[128,128,128,0]]

    #for i in range(0,1): #(0,4)
    #clrs = np.concatenate((clrs, colors), axis=0)
        #i = i+1
    #verts, clrs

    #pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
    #pcd.compute_vertex_normals()
    #pcd.paint_uniform_color((1.0, 1.0, 1.0))
    #mesh.append(pcd)
    #print(mesh[len(mesh)-1])
    if not str(fnum) in mesh_n:
        mesh_n.append(str(fnum))
    print('mesh - ok')

    # Save as glb
    #glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    #o3d.io.write_triangle_mesh(glb_file.name, pcd)
    #print('file - ok')
    return "./TriangleWithoutIndices.gltf", ",".join(mesh_n)
    

def blur_image(image, depth, blur_data):
    blur_a = blur_data.split()
    #print(f'blur data {blur_data}')

    blur_frame = image.copy()
    j = 0
    while j < 256:
        i = 255 - j
        blur_lo = np.array([i,i,i])
        blur_hi = np.array([i+1,i+1,i+1])
        blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
        
        #print(f'kernel size {int(blur_a[j])}')
        blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
                
        blur_frame[blur_mask>0] = blur[blur_mask>0]
        j = j + 1

    white = cv2.inRange(blur_frame, np.array([255,255,255]), np.array([255,255,255]))
    blur_frame[white>0] = (254,254,254)
    
    return blur_frame

def loadfile(f):
    return f

def show_json(txt):
    data = json.loads(txt)
    print(txt)
    i=0
    while i < len(data[2]):
        data[2][i] = data[2][i]["image"]["path"]
        data[4][i] = data[4][i]["path"]
        i=i+1
    return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]


def seg_frame(newmask, b, d):

    if newmask.shape[0] == 2048: #height
        gd = cv2.imread('./gradient_large.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    elif newmask.shape[0] == 1024:
        gd = cv2.imread('./gradient.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    else:
        gd = cv2.imread('./gradient_small.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
   
    newmask[np.absolute(newmask.astype(np.int16)-gd.astype(np.int16))<16] = 0
    ret,newmask = cv2.threshold(newmask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

    #b = 1
    #d = 32
    element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
    bd = cv2.erode(newmask, element)
    element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
    bg = cv2.dilate(newmask, element)
    bg[bg.shape[0]-64:bg.shape[0],0:bg.shape[1]] = 0

    mask = np.zeros(newmask.shape[:2],np.uint8)
    # https://docs.opencv.org/4.x/d8/d83/tutorial_py_grabcut.html
    # wherever it is marked white (sure foreground), change mask=1
    # wherever it is marked black (sure background), change mask=0
    mask[bg == 255] = 3
    mask[bd == 255] = 1 #2: probable bg, 3: probable fg
    
    return mask


def select_frame(d, evt: gr.SelectData):
    global frame_selected
    global depths
    global masks
    global edge
    
    if evt.index != frame_selected:
        edge = []
        frame_selected = evt.index
        
    return depths[frame_selected], frame_selected

def switch_rows(v):
    global frames
    global depths
    if v == True:
        print(depths[0])
        return depths
    else:
        print(frames[0])
        return frames


def bincount(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    a1D = np.ravel_multi_index(a2D.T, col_range)
    return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))

def reset_mask(d):
    global frame_selected
    global frames
    global backups
    global masks
    global depths
    global edge

    edge = []
    backup = cv2.imread(backups[frame_selected]).astype(np.uint8)
    cv2.imwrite(frames[frame_selected], backup)

    d["layers"][0][0:d["layers"][0].shape[0], 0:d["layers"][0].shape[1]] = (0,0,0,0)

    return gr.ImageEditor(value=d)


def draw_mask(o, b, v, d, evt: gr.EventData):
    global frames
    global depths
    global params
    global frame_selected
    global masks
    global gradient
    global edge
    
    points = json.loads(v)
    pts = np.array(points, np.int32)
    pts = pts.reshape((-1,1,2))

    if len(edge) == 0 or params["fnum"] != frame_selected:
      if params["fnum"] != frame_selected:
          d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
          params["fnum"] = frame_selected

      bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
      bg[bg==255] = 0
        
      edge = bg.copy()
    else:
      bg = edge.copy()

    x = points[len(points)-1][0]
    y = points[len(points)-1][1]

    mask = cv2.imread(masks[frame_selected], cv2.IMREAD_GRAYSCALE).astype(np.uint8)
    mask[mask==128] = 0
    print(mask[mask>0]-128)
    d["layers"][0] = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGBA)

    sel = cv2.floodFill(mask, None, (x, y), 1, 2, 2, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
    # 255 << 8 tells to fill with the value 255)
    sel = sel[1:sel.shape[0]-1, 1:sel.shape[1]-1]

    d["layers"][0][sel==0] = (0,0,0,0)


    mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
    mask[mask==0] = 128
    print(mask[mask>128]-128)
    mask, bgdModel, fgdModel = cv2.grabCut(cv2.cvtColor(d["background"], cv2.COLOR_RGBA2RGB), mask-128, None,None,None,15, cv2.GC_INIT_WITH_MASK)
    mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')

    frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    frame[mask>0] = (255,255,255)
    cv2.imwrite(frames[frame_selected], frame)
    
    switch_rows(False)
    return gr.ImageEditor(value=d)


load_model="""
async(c, o, p, d, n, m, s)=>{
  var intv = setInterval(function(){
    if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
      try {
      if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
        BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable

          var then = new Date().getTime();
          var now, delta;
          const interval = 1000 / 25;
          const tolerance = 0.1;
          
          BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
          BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
            now = new Date().getTime();
            delta = now - then;
            then = now - (delta % interval);
            if (delta >= interval - tolerance) {
                BABYLON.Engine.LastCreatedScene.render();
            }
          });
        
          BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
          BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(255,255,255,255);
          BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
          //BABYLON.Engine.LastCreatedScene.autoClear = false;
          //BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
          /*for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
            if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
              BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
            }
          }*/
          BABYLON.Engine.LastCreatedScene.getAnimationRatio();
        });
        
        if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
          BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
            pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
          }
        }
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;

        //BABYLON.Engine.LastCreatedScene.activeCamera.detachControl(document.getElementById("model3D").getElementsByTagName("canvas")[0]);
        BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
        //pan
        BABYLON.Engine.LastCreatedScene.activeCamera.panningInertia = 0.0;
        BABYLON.Engine.LastCreatedScene.activeCamera.panningDistanceLimit = 16;
        BABYLON.Engine.LastCreatedScene.activeCamera.panningSensibility = 16;
        //zoom
        BABYLON.Engine.LastCreatedScene.activeCamera.pinchDeltaPercentage = 1/256;
        BABYLON.Engine.LastCreatedScene.activeCamera.wheelDeltaPercentage = 1/256;
        BABYLON.Engine.LastCreatedScene.activeCamera.upperRadiusLimit = (1.57-0.157)*16;
        BABYLON.Engine.LastCreatedScene.activeCamera.lowerRadiusLimit = 0.0;
        //BABYLON.Engine.LastCreatedScene.activeCamera.attachControl(document.getElementById("model3D").getElementsByTagName("canvas")[0], false);
        
        BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;

        document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
        document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
        document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}

        document.getElementById("model3D").appendChild(document.getElementById("compass_box"));
        window.coords = JSON.parse(document.getElementById("coords").getElementsByTagName("textarea")[0].value);
        window.counter = 0;

        if (o.indexOf(""+n) < 0) {
          if (o != "") { o += ","; }
          o += n;
        }
        //alert(o);
        var o_ = o.split(",");
        var q = BABYLON.Engine.LastCreatedScene.meshes;
        for(i = 0; i < q.length; i++) {
          let mesh = q[i];
          mesh.dispose(false, true);
        }
        var dome = [];
        /*for (var j=0; j<o_.length; j++) {
          o_[j] = parseInt(o_[j]);
          dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url, 
          {
            resolution: 16,
            size: 512
          }, BABYLON.Engine.LastCreatedScene);
          var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
          for(i = 0; i < q.length; i++) {
            let mesh = q[i];
            mesh.dispose(false, true);
          }
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].name = "dome"+j;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].visibility = 0.9999;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
          
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotationQuaternion = null;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].position.z = coords[o_[j]].lat;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].position.x = coords[o_[j]].lng;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotation.y = coords[o_[j]].heading / 180 * Math.PI;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotation.z = -coords[o_[j]].pitch / 180 * Math.PI;
        }*/

        if (s == false) {
          v_url = document.getElementById("output_video").getElementsByTagName("video")[0].src;
        } else {
          v_url = document.getElementById("depth_video").getElementsByTagName("video")[0].src;
        }
        window.videoDome = new BABYLON.VideoDome(
            "videoDome", [v_url],
            {
                resolution: 16,
                size: 512,
                clickToPlay: false,
            }, BABYLON.Engine.LastCreatedScene
        );
        var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
        for (i = 0; i < q.length; i++) {
            let mesh = q[i];
            mesh.dispose(false, true);
        }
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotationQuaternion = null;
        //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].position.z = coords[counter].lat;
        //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].position.x = coords[counter].lng;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotation.y = coords[counter].heading / 180 * Math.PI;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].rotation.z = -coords[counter].pitch / 180 * Math.PI;
        
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
        //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.emissiveTexture = videoDome.videoTexture;
        //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.emissiveTexture.hasAlpha = true;
        //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromEmissiveTexture = true;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = 1;
        BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].visibility = 0.9999;

        window.md = false;
        window.rd = false;
        window.compass = document.getElementById("compass");
        window.x = 0;
        window.y = 0;
        window.xold = 0;
        window.yold = 0;
        window.buffer = null;
        window.bufferCanvas = document.createElement("canvas");
        window.ctx = bufferCanvas.getContext("2d", { willReadFrequently: true });
        window.video = document.getElementById("depth_video").getElementsByTagName("video")[0];
        window.parallax = 0;
        window.xdir = new BABYLON.Vector3(1, 0, 0);
        window.rdir = new BABYLON.Vector3(0, 0, 0);
        window.videoDomeMesh = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1];

        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointermove', function(evt) {
        if (md === true) {
          rdir = BABYLON.Engine.LastCreatedScene.activeCamera.getDirection(xdir);
          videoDomeMesh.position.x = parallax * rdir.x;
          videoDomeMesh.position.z = parallax * rdir.z;
          
          try {
            compass.style.transform = "rotateX(" + (BABYLON.Engine.LastCreatedScene.activeCamera.beta-Math.PI/2) + "rad) rotateZ(" + BABYLON.Engine.LastCreatedScene.activeCamera.alpha + "rad)";
          } catch(e) {alert(e);}
        }
        if (rd === true) {
          x = parseInt(evt.clientX - evt.target.getBoundingClientRect().x);
          y = parseInt(evt.clientY - evt.target.getBoundingClientRect().y);
          
          if (Math.abs(BABYLON.Engine.LastCreatedScene.activeCamera.radius) > (1.57-0.157)*16) {
            BABYLON.Engine.LastCreatedScene.activeCamera.radius = (1.57-0.157)*16;
          } else {
            BABYLON.Engine.LastCreatedScene.activeCamera.fov = BABYLON.Engine.LastCreatedScene.activeCamera.radius/16 + 0.157;
          }
          document.getElementById('zoom').value = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
          document.getElementById('zoom').parentNode.childNodes[2].innerText = document.getElementById('zoom').value;
          
          xold=x;
          yold=y;
        }
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointerdown', function() {
          md = true;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointerup', function() {
          md = false;
          rd = false;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointercancel', function() {
          md = false;
          rd = false;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointerleave', function() {
          md = false;
          rd = false;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('pointerout', function() {
          md = false;
          rd = false;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('contextmenu', function() {
          rd = true;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('gesturestart', function() {
          rd = true;
        });
        document.getElementById("model3D").getElementsByTagName("canvas")[0].addEventListener('gestureend', function() {
          rd = false;
        });
        

        function requestMap() {
        try {
          ctx.drawImage(video, 0, 0, video.videoWidth, video.videoHeight);
          videoDome.videoTexture.video.pause();
          video.pause();
          if (buffer) {
            counter = parseInt(video.currentTime);
            if (!coords[counter]) {counter = coords.length-1;}
            applyDisplacementMapFromBuffer(videoDomeMesh, buffer, video.videoWidth, video.videoHeight, 0, -1, null, null, true);
          }
          buffer = ctx.getImageData(0, 0, video.videoWidth, video.videoHeight).data;
          applyDisplacementMapFromBuffer(videoDomeMesh, buffer, video.videoWidth, video.videoHeight, 0, 1, null, null, true);
        } catch(e) {alert(e)}
        }
        window.requestMap = requestMap;

        videoDome.videoTexture.video.oncanplaythrough = function () {
          document.getElementById('seek').innerHTML = '';
          for (var i=0; i<videoDome.videoTexture.video.duration; i++) {
            document.getElementById('seek').innerHTML += '<a href="#" style="position:absolute;left:'+(56+coords[i].lng/2)+'px;top:'+(56-coords[i].lat/2)+'px;" onclick="seek('+i+');">-'+i+'-</a> ';
          }
          bufferCanvas.width = video.videoWidth;
          bufferCanvas.height = video.videoHeight;
          
          videoPlay();
        };

        //var debugLayer = BABYLON.Engine.LastCreatedScene.debugLayer.show();
        
        if (document.getElementById("model")) {
          document.getElementById("model").appendChild(document.getElementById("model3D"));
          toggleDisplay("model");
        }
        
        clearInterval(intv);
      }
      } catch(e) {alert(e);}
    }
  }, 40);
}
"""

js = """
async()=>{
console.log('Hi');

const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;

for (var i=0; i<256; i++) {
  const hr = document.createElement('hr');
  hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
  chart.appendChild(hr);
}

function resetLine() {
  a.fill(1);
  for (var i=0; i<256; i++) {
    chart.childNodes[i].style.height = a[i] + 'px';
    chart.childNodes[i].style.marginTop = '32px';
  }
}
resetLine();
window.resetLine = resetLine;

function pointerDown(x, y) {
  md = true;
  xold = parseInt(x - chart.getBoundingClientRect().x);
  yold = parseInt(y - chart.getBoundingClientRect().y);
  chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;

function pointerUp() {
  md = false;
  var evt = document.createEvent('Event');
  evt.initEvent('input', true, false);
  blur_in.dispatchEvent(evt);
  chart.title = '';
}
window.pointerUp = pointerUp;

function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }

function drawLine(x, y) {
  x = parseInt(x - chart.getBoundingClientRect().x);
  y = parseInt(y - chart.getBoundingClientRect().y);
  if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
    if (y < 32) {
      a[x] = Math.abs(32-y)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = y + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    } else if (y < 64) {
      a[x] = Math.abs(y-32)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = (64-y) + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    }
    blur_in.value = a.join(' ');
    xold = x;
    yold = y;
    chart.title = xold + ',' + yold;
  }
}
window.drawLine = drawLine;


window.screenshot = false;

function snapshot() {
if (BABYLON) {
  screenshot = true;
  BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
    if (screenshot === true) {
    screenshot = false;
    try {
    BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera, 
        { precision: 1.0 }, (durl) => { 
             var cnvs = document.getElementById("model3D").getElementsByTagName("canvas")[0]; //.getContext("webgl2");
             var svgd = `<svg id="svg_out" viewBox="0 0 ` + cnvs.width + ` ` + cnvs.height + `" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
                          <defs>
                            <filter id="blur" x="0" y="0" xmlns="http://www.w3.org/2000/svg">
                              <feGaussianBlur in="SourceGraphic" stdDeviation="1" />
                            </filter>
                          </defs>
                          <image filter="url(#blur)" id="svg_img" x="0" y="0" width="` + cnvs.width + `" height="` + cnvs.height + `" xlink:href=\"` + durl + `\"/>
                        </svg>`;
                        document.getElementById("cnv_out").width = cnvs.width;
                        document.getElementById("cnv_out").height = cnvs.height;
                        document.getElementById("img_out").src = "data:image/svg+xml;base64," + btoa(svgd);        
                      }
                    );
                  } catch(e) { alert(e); }
                  // https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
                }
          });
}
}
window.snapshot = snapshot;


window.recorder = null;

function record_video() {
  try {
  if (BABYLON.VideoRecorder.IsSupported(BABYLON.Engine.LastCreatedScene.getEngine()) && (recorder == null || !recorder.isRecording) ) {
    if (recorder == null) {
        recorder = new BABYLON.VideoRecorder(BABYLON.Engine.LastCreatedScene.getEngine(), { mimeType:'video/mp4', fps:25, /*audioTracks: mediaStreamDestination.stream.getAudioTracks()*/ });
    }
    recorder.startRecording('video.mp4', 60*60);
  }
  } catch(e) {alert(e);}
}
window.record_video = record_video;

function stop_recording() {
  if (recorder.isRecording) {
    recorder.stopRecording();
  }
}
window.stop_recording = stop_recording;

function seek(t) {
  videoDome.videoTexture.video.currentTime = t;
  if (videoDome.videoTexture.video.currentTime > videoDome.videoTexture.video.duration) {
    videoDome.videoTexture.video.currentTime = videoDome.videoTexture.video.duration;
  } else if (videoDome.videoTexture.video.currentTime < 0) {
    videoDome.videoTexture.video.currentTime = 0;
  }
  video.currentTime = t;
  if (video.currentTime > video.duration) {
    video.currentTime = video.duration;
  } else if (video.currentTime < 0) {
    video.currentTime = 0;
  }
  requestMap();
}
window.seek = seek;

function videoPlay() {
  videoDome.videoTexture.video.oncanplaythrough = null;
  video.oncanplaythrough = null;

  videoDome.videoTexture.video.loop = true;
  video.loop = true;
  videoDome.videoTexture.video.play();
  video.play();
}
window.videoPlay = videoPlay;


    function applyDisplacementMapFromBuffer(
        mesh,
        buffer,
        heightMapWidth,
        heightMapHeight,
        minHeight,
        maxHeight,
        uvOffset,
        uvScale,
        forceUpdate
    ) {
      try {
        if (!mesh.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) {
            let positions = mesh.getVerticesData(BABYLON.VertexBuffer.PositionKind);
            let normals = [];
            BABYLON.VertexData.ComputeNormals(positions, mesh.getIndices(), normals, {useRightHandedSystem: true});
            mesh.setVerticesData(BABYLON.VertexBuffer.NormalKind, normals);
        }
        const positions = mesh.getVerticesData(BABYLON.VertexBuffer.PositionKind, true, true);
        const normals = mesh.getVerticesData(BABYLON.VertexBuffer.NormalKind);
        const uvs = mesh.getVerticesData(BABYLON.VertexBuffer.UVKind);

        let position = BABYLON.Vector3.Zero();
        const normal = BABYLON.Vector3.Zero();
        const uv = BABYLON.Vector2.Zero();

        uvOffset = uvOffset || BABYLON.Vector2.Zero();
        uvScale = uvScale || new BABYLON.Vector2(1, 1);

        for (let index = 0; index < positions.length; index += 3) {
            BABYLON.Vector3.FromArrayToRef(positions, index, position);
            BABYLON.Vector3.FromArrayToRef(normals, index, normal);
            BABYLON.Vector2.FromArrayToRef(uvs, (index / 3) * 2, uv);

            // Compute height
            const u = (Math.abs(uv.x * uvScale.x + (uvOffset.x % 1)) * (heightMapWidth - 1)) % heightMapWidth | 0;
            const v = (Math.abs(uv.y * uvScale.y + (uvOffset.y % 1)) * (heightMapHeight - 1)) % heightMapHeight | 0;

            const pos = (u + v * heightMapWidth) * 4;
            const r = buffer[pos] / 255.0;
            const g = buffer[pos + 1] / 255.0;
            const b = buffer[pos + 2] / 255.0;
            const a = buffer[pos + 3] / 255.0;

            const gradient = r * 0.33 + g * 0.33 + b * 0.33;
            //const gradient = a;

            normal.normalize();
            normal.scaleInPlace(minHeight + (maxHeight - minHeight) * gradient);
            position = position.add(normal);

            position.toArray(positions, index);
        }
        mesh.setVerticesData(BABYLON.VertexBuffer.PositionKind, positions);

        return mesh;
    } catch(e) {alert(e)}
    }
    window.applyDisplacementMapFromBuffer = applyDisplacementMapFromBuffer;


var intv_ = setInterval(function(){
if (document.getElementById("image_edit") && document.getElementById("image_edit").getElementsByTagName("canvas")) {
  document.getElementById("image_edit").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
  document.getElementById("image_edit").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
            
  document.getElementById("image_edit").getElementsByTagName("canvas")[0].onclick = function(e) {
    var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
    var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);

    var p = document.getElementById("mouse").getElementsByTagName("textarea")[0].value.slice(1, -1);
    if (p != "") { p += ", "; }
    p += "[" + x + ", " + y + "]";
    document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[" + p + "]";
              
    var evt = document.createEvent("Event");
    evt.initEvent("input", true, false);
    document.getElementById("mouse").getElementsByTagName("textarea")[0].dispatchEvent(evt);
  }
  document.getElementById("image_edit").getElementsByTagName("canvas")[0].onfocus = function(e) {
    document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[]";
  }
  document.getElementById("image_edit").getElementsByTagName("canvas")[0].onblur = function(e) {
    document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[]";
  }
  clearInterval(intv_);
}
}, 40);

}
"""

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""

head = """
"""

title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files, intended for Google Street View panorama slideshows.   
Please refer to the [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

    
#transform = Compose([
#        Resize(
#            width=518,
#            height=518,
#            resize_target=False,
#            keep_aspect_ratio=True,
#            ensure_multiple_of=14,
#            resize_method='lower_bound',
#            image_interpolation_method=cv2.INTER_CUBIC,
#        ),
#        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#        PrepareForNet(),
#])

# @torch.no_grad()
# def predict_depth(model, image):
#     return model(image)

with gr.Blocks(css=css, js=js, head=head) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Video Depth Prediction demo")

    with gr.Row():
        with gr.Column():
            with gr.Group():
              input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
              input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
              input_video = gr.Video(label="Input Video", format="mp4")
              input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
              submit = gr.Button("Submit")
            with gr.Group():
              output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
              output_switch = gr.Checkbox(label="Show depths")
              output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
              selected = gr.Number(label="Selected frame", visible=False, elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
              with gr.Accordion(label="Depths", open=False):
                output_depth = gr.Files(label="Depth files", interactive=False)
            with gr.Group():
              output_mask = gr.ImageEditor(layers=False, sources=('clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
              with gr.Accordion(label="Border", open=False):
                boffset = gr.Slider(label="Inner", value=1, maximum=256, minimum=0, step=1)
                bsize = gr.Slider(label="Outer", value=32, maximum=256, minimum=0, step=1)
                mouse = gr.Textbox(label="Mouse x,y", elem_id="mouse", value="""[]""", interactive=False)
              reset = gr.Button("Reset", size='sm')
              mouse.input(fn=draw_mask, show_progress="minimal", inputs=[boffset, bsize, mouse, output_mask], outputs=[output_mask])
              reset.click(fn=reset_mask, inputs=[output_mask], outputs=[output_mask])

        with gr.Column():
          model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
          processed_video = gr.Video(label="Output Video", format="mp4", elem_id="output_video", interactive=False)
          processed_zip = gr.File(label="Output Archive", interactive=False)
          depth_video = gr.Video(label="Depth Video", format="mp4", elem_id="depth_video", interactive=False, visible=True)
          result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 512], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D")
          with gr.Accordion(label="Embed in website", open=False):
            embed_model = gr.Textbox(elem_id="embed_model", label="Include this wherever the model is to appear on the page", interactive=False, value="""
              
            """)
            
          with gr.Tab("Blur"):
            chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
            <style>
  * {
    user-select: none;
  }
  html, body {
    user-select: none;
  }
  #model3D canvas {
    user-select: none;
  }
  #chart hr {
    width: 1px;
    height: 1px;
    clear: none;
    border: 0;
    padding:0;
    display: inline-block;
    position: relative;
    vertical-align: top;
    margin-top:32px;
  }
  #chart {
    padding:0;
    margin:0;
    width:256px;
    height:64px;
    background-color:#808080;
    touch-action: none;
  }
    #compass_box {
      position:absolute;
	  top:2em;
	  right:3px;
	  border:1px dashed gray;
	  border-radius: 50%;
	  width:1.5em;
	  height:1.5em;
	  padding:0;
	  margin:0;
	}
	#compass {
	  position:absolute;
	  transform:rotate(0deg);
	  border:1px solid black;
	  border-radius: 50%;
	  width:100%;
	  height:100%;
	  padding:0;
	  margin:0;
	  line-height:1em;
	  letter-spacing:0;
	}
    #compass b {
      margin-top:-1px;
    }
            </style>
            """)
            average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
              var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
              for (var i=0; i<256; i++) {
                var avg = 0;
                var div = this.value;
                for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
                  if (pts_a[j]) {
                    avg += parseInt(pts_a[j]);
                  } else if (div > 1) {
                    div--;
                  }
                }
                pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;

                document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
                document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
              }
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");

              var evt = document.createEvent(\"Event\");
              evt.initEvent(\"input\", true, false);
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
            ' oninput='
              this.parentNode.childNodes[2].innerText = this.value;
            ' onchange='this.click();'/><span>1</span>""")
            with gr.Accordion(label="Levels", open=False):
              blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value=blurin)
          with gr.Group():
            with gr.Accordion(label="Locations", open=False):
              output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected])
              example_coords = """[
                  {"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997}, 
                  {"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064}, 
                  {"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028}, 
                  {"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005}, 
                  {"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
                ]"""
              coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
              mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
            load_all = gr.Checkbox(label="Load all")

          with gr.Group():
            camera = gr.HTML(value="""<div style='width:128px;height:128px;border:1px dotted gray;padding:0;margin:0;float:left;clear:none;' id='seek'></div>
            <span style='max-width:50%;float:right;clear:none;text-align:right;'>
            <a href='#' id='reset_cam' style='float:right;clear:none;color:white' onclick='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata = { 
                  screenshot: true,
                  pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
                }
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
              BABYLON.Engine.LastCreatedScene.activeCamera.alpha = 0;
              BABYLON.Engine.LastCreatedScene.activeCamera.beta = Math.PI / 2;
    
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4; 
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
              
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
            '>Reset camera</a><br/>
            <span><label for='zoom' style='width:8em'>Zoom</label><input id='zoom' type='range' style='width:128px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;

              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
            '/><span>0.8</span></span><br/>
            <span><label for='pan' style='width:8em'>Pan</label><input id='pan' type='range' style='width:128px;height:1em;' value='0' min='-16' max='16' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              }
              parallax = this.value;
              rdir = BABYLON.Engine.LastCreatedScene.activeCamera.getDirection(xdir);
              videoDomeMesh.position.x = parallax * rdir.x;
              videoDomeMesh.position.z = parallax * rdir.z;
              this.parentNode.childNodes[2].innerText = parallax;
            '/><span>0.0</span></span><br/>
            <span><label for='contrast' style='width:8em'>Contrast</label><input id='contrast' type='range' style='width:128px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
            '/><span>1.0</span></span><br/>
            <span><label for='exposure' style='width:8em'>Exposure</label><input id='exposure' type='range' style='width:128px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
            '/><span>1.0</span></span><br/>
              <a href='#' onclick='snapshot();'>Screenshot</a>
              <a href='#' onclick='record_video();'>Record</a>
              <a href='#' onclick='stop_recording();'>Stop rec.</a>
              <a href='#' onclick='videoPlay();'>Play</a></span>""")
            snapshot = gr.HTML(value="""<img src='' id='img_out' onload='var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");ctxt.drawImage(this, 0, 0);'/><br/>
              <canvas id='cnv_out'></canvas>
              <div id='compass_box'><div id='compass'><a id='fullscreen' onclick='
                const model3D = document.getElementById(\"model3D\");
                if (model3D.parentNode.tagName != \"BODY\") {
                  window.modelContainer = model3D.parentNode.id;
                  document.body.appendChild(model3D);
                  model3D.style.position = \"fixed\";
                  model3D.style.left = \"0\";
                  model3D.style.top = \"0\";
                  model3D.style.zIndex = \"100\";
                  document.getElementById(\"compass_box\").style.zIndex = \"101\";
                } else {
                  document.getElementById(window.modelContainer).appendChild(model3D);
                  model3D.style.position = \"relative\";
                  model3D.style.left = \"0\";
                  model3D.style.top = \"0\";
                  model3D.style.zIndex = \"initial\";
                  document.getElementById(\"compass_box\").style.zIndex = \"initial\";
                }'><b style='color:blue;'>◅</b>𝍠<b style='color:red;'>▻</b></a></div>
              </div>
            """)
            render = gr.Button("Render")
            input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])

    
    def on_submit(uploaded_video,model_type,blur_in,boffset,bsize,coordinates):
        global locations
        locations = []
        avg = [0, 0]
        
        locations = json.loads(coordinates)
        for k, location in enumerate(locations):
            if "tiles" in locations[k]:
                locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
                locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
            elif not "heading" in locations[k] or not "pitch" in locations[k]:
                locations[k]["heading"] = 0.0
                locations[k]["pitch"] = 0.0

            if "location" in locations[k]:
                locations[k] = locations[k]["location"]["latLng"]
            elif not "lat" in locations[k] or not "lng" in locations[k]:
                locations[k]["lat"] = 0.0
                locations[k]["lng"] = 0.0
                
            avg[0] = avg[0] + locations[k]["lat"]
            avg[1] = avg[1] + locations[k]["lng"]
                
        if len(locations) > 0:
            avg[0] = avg[0] / len(locations)
            avg[1] = avg[1] / len(locations)
            
        for k, location in enumerate(locations):
            lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
            lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
            locations[k]["lat"] = float(lat / 2.5 * 111 * np.sign(location["lat"]-avg[0]))
            locations[k]["lng"] = float(lng / 2.5 * 111 * np.sign(location["lng"]-avg[1]))
        print(locations)
        # 2.5m is height of camera on google street view car, 
        # distance from center of sphere to pavement roughly 255 - 144 = 111 units
            
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video,encoder=model_type,blur_data=blurin,o=boffset,b=bsize)

        return output_video_path + (json.dumps(locations),)

    submit.click(on_submit, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, depth_video, coords])
    render.click(None, inputs=[coords, mesh_order, output_frame, output_mask, selected, output_depth, output_switch], outputs=None, js=load_model)
    render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, mesh_order])

    example_files = [["./examples/streetview.mp4", "vits", blurin, 1, 32, example_coords]]
    examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, depth_video, coords])
    

if __name__ == '__main__':
    demo.queue().launch()