File size: 7,883 Bytes
c26ed9b
a2df113
 
c26ed9b
 
 
 
 
 
 
 
 
 
 
a2df113
ca5a024
a2df113
c26ed9b
 
 
 
 
 
 
 
 
 
7160c8d
c26ed9b
7160c8d
c26ed9b
7160c8d
c26ed9b
7160c8d
 
ca5a024
 
a2df113
 
 
 
 
 
 
 
 
 
7160c8d
 
 
 
 
 
a2df113
 
 
ca5a024
a2df113
 
 
 
 
 
 
7160c8d
a2df113
5e9f512
 
2c502aa
 
 
 
 
 
 
 
 
 
 
 
5e9f512
 
a2df113
 
 
 
 
5e9f512
7160c8d
a2df113
c26ed9b
 
 
 
 
 
 
 
a2df113
c26ed9b
 
 
 
 
 
 
a2df113
c26ed9b
 
 
 
 
a2df113
 
 
 
 
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
 
 
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
c26ed9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2df113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""app.py
Enhanced Repository Recommender System using Streamlit and CodeT5-small
"""

import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from tqdm import tqdm
from datasets import load_dataset
from datetime import datetime

# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize session state
if 'history' not in st.session_state:
    st.session_state.history = []
if 'feedback' not in st.session_state:
    st.session_state.feedback = {}

# Step 1: Load Dataset and Precompute Embeddings
@st.cache_resource
def load_data_and_model():
    """
    Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
    """
    try:
        # Download and load dataset
        dataset = load_dataset("frankjosh/filtered_dataset")
        data = pd.DataFrame(dataset['train'])

        # Ensure required columns exist
        required_columns = ['docstring', 'summary']
        for col in required_columns:
            if col not in data.columns:
                st.error(f"Missing required column: {col}")
                st.stop()

        # Combine text fields for embedding generation
        data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
    except Exception as e:
        st.error(f"Error loading dataset: {str(e)}")
        st.stop()

    # Load CodeT5-small model and tokenizer
    model_name = "Salesforce/codet5-small"
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name)

        # Move model to GPU if available
        if torch.cuda.is_available():
            model = model.to('cuda')
        model.eval()  # Set to evaluation mode
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.stop()

    return data, tokenizer, model

# Define the embedding generation function
@st.cache_data
def generate_embedding(_model, _tokenizer, text):
    inputs = _tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    if torch.cuda.is_available():
        inputs = {k: v.to('cuda') for k, v in inputs.items()}
    with torch.no_grad():
        outputs = _model.encoder(**inputs)
    embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
    if torch.cuda.is_available():
        embedding = embedding.cpu()
    return embedding.numpy()

# Precompute embeddings for dataset
def precompute_embeddings(data, model, tokenizer):
    embeddings = []
    for text in tqdm(data['text'], desc="Generating embeddings"):
        embedding = generate_embedding(model, tokenizer, text)
        embeddings.append(embedding)
    data['embedding'] = embeddings
    return data

# Generate a concise case study brief from repository data
def generate_case_study(repo_data):
    template = f"""
    **Project Overview**: {repo_data['summary'][:50]}...

    **Key Features**:
    - Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
    - {repo_data['docstring'][:50]}...

    **Potential Applications**: This repository can be utilized for projects requiring {' '.join(repo_data['summary'].split()[:5])}...

    **Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}

    **Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
    """
    return template[:150] + "..."

# Save user feedback for a repository
def save_feedback(repo_id, feedback_type):
    if repo_id not in st.session_state.feedback:
        st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
    st.session_state.feedback[repo_id][feedback_type] += 1

# Load resources
data, tokenizer, model = load_data_and_model()
data = precompute_embeddings(data, model, tokenizer)

# Main App Interface
st.title("Enhanced Repository Recommender System πŸš€")

# Sidebar for History and Stats
with st.sidebar:
    st.header("πŸ“Š Search History")
    if st.session_state.history:
        for idx, item in enumerate(st.session_state.history[-5:]):  # Show last 5 searches
            with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
                st.write(f"Time: {item['timestamp']}")
                st.write(f"Results: {len(item['results'])} repositories")
                if st.button("Rerun this search", key=f"rerun_{idx}"):
                    st.session_state.rerun_query = item['query']
    else:
        st.write("No search history yet")

    st.header("πŸ“ˆ Usage Statistics")
    st.write(f"Total Searches: {len(st.session_state.history)}")
    if st.session_state.feedback:
        feedback_df = pd.DataFrame(st.session_state.feedback).T
        feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
        st.bar_chart(feedback_df[['likes', 'dislikes']])

# Main interface
user_query = st.text_area(
    "Describe your project:",
    height=150,
    placeholder="Example: I need a machine learning project for customer churn prediction..."
)

# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
    search_button = st.button("πŸ” Search Repositories", type="primary")
with col2:
    top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)

if search_button and user_query.strip():
    with st.spinner("Finding relevant repositories..."):
        # Generate query embedding and get recommendations
        query_embedding = generate_embedding(model, tokenizer, user_query)
        data['similarity'] = data['embedding'].apply(
            lambda x: cosine_similarity([query_embedding], [x])[0][0]
        )
        recommendations = data.nlargest(top_n, 'similarity')

        # Save to history
        st.session_state.history.append({
            'query': user_query,
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'results': recommendations['repo'].tolist()
        })

        # Display recommendations
        st.markdown("### 🎯 Top Recommendations")
        for idx, row in recommendations.iterrows():
            with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
                # Repository details
                col1, col2 = st.columns([2, 1])
                with col1:
                    st.markdown(f"**URL:** [View Repository]({row['url']})")
                    st.markdown(f"**Path:** `{row['path']}`")
                with col2:
                    st.metric("Match Score", f"{row['similarity']:.2%}")

                    # Feedback buttons
                    feedback_col1, feedback_col2 = st.columns(2)
                    with feedback_col1:
                        if st.button("πŸ‘", key=f"like_{idx}"):
                            save_feedback(row['repo'], 'likes')
                            st.success("Thanks for your feedback!")
                    with feedback_col2:
                        if st.button("πŸ‘Ž", key=f"dislike_{idx}"):
                            save_feedback(row['repo'], 'dislikes')
                            st.success("Thanks for your feedback!")

                # Case Study Tab
                with st.expander("πŸ“‘ Case Study Brief"):
                    st.markdown(generate_case_study(row))

                # Documentation Tab
                if row['docstring']:
                    with st.expander("πŸ“š Documentation"):
                        st.markdown(row['docstring'])

# Footer
st.markdown("---")
st.markdown(
    """
    Made with πŸ€– using CodeT5 and Streamlit |
    GPU Status: {'🟒 Enabled' if torch.cuda.is_available() else 'πŸ”΄ Disabled'} |
    Model: CodeT5-Small
    """
)