Spaces:
Sleeping
Sleeping
File size: 7,883 Bytes
c26ed9b a2df113 c26ed9b a2df113 ca5a024 a2df113 c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d c26ed9b 7160c8d ca5a024 a2df113 7160c8d a2df113 ca5a024 a2df113 7160c8d a2df113 5e9f512 2c502aa 5e9f512 a2df113 5e9f512 7160c8d a2df113 c26ed9b a2df113 c26ed9b a2df113 c26ed9b a2df113 c26ed9b a2df113 c26ed9b a2df113 c26ed9b a2df113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# -*- coding: utf-8 -*-
"""app.py
Enhanced Repository Recommender System using Streamlit and CodeT5-small
"""
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from tqdm import tqdm
from datasets import load_dataset
from datetime import datetime
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Step 1: Load Dataset and Precompute Embeddings
@st.cache_resource
def load_data_and_model():
"""
Load the dataset and precompute embeddings. Load the CodeT5-small model and tokenizer.
"""
try:
# Download and load dataset
dataset = load_dataset("frankjosh/filtered_dataset")
data = pd.DataFrame(dataset['train'])
# Ensure required columns exist
required_columns = ['docstring', 'summary']
for col in required_columns:
if col not in data.columns:
st.error(f"Missing required column: {col}")
st.stop()
# Combine text fields for embedding generation
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
st.stop()
# Load CodeT5-small model and tokenizer
model_name = "Salesforce/codet5-small"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Move model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
model.eval() # Set to evaluation mode
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.stop()
return data, tokenizer, model
# Define the embedding generation function
@st.cache_data
def generate_embedding(_model, _tokenizer, text):
inputs = _tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
if torch.cuda.is_available():
inputs = {k: v.to('cuda') for k, v in inputs.items()}
with torch.no_grad():
outputs = _model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
if torch.cuda.is_available():
embedding = embedding.cpu()
return embedding.numpy()
# Precompute embeddings for dataset
def precompute_embeddings(data, model, tokenizer):
embeddings = []
for text in tqdm(data['text'], desc="Generating embeddings"):
embedding = generate_embedding(model, tokenizer, text)
embeddings.append(embedding)
data['embedding'] = embeddings
return data
# Generate a concise case study brief from repository data
def generate_case_study(repo_data):
template = f"""
**Project Overview**: {repo_data['summary'][:50]}...
**Key Features**:
- Repository contains production-ready {repo_data['path'].split('/')[-1]} implementation
- {repo_data['docstring'][:50]}...
**Potential Applications**: This repository can be utilized for projects requiring {' '.join(repo_data['summary'].split()[:5])}...
**Implementation Complexity**: {'Medium' if len(repo_data['docstring']) > 500 else 'Low'}
**Integration Potential**: {'High' if 'api' in repo_data['text'].lower() or 'interface' in repo_data['text'].lower() else 'Medium'}
"""
return template[:150] + "..."
# Save user feedback for a repository
def save_feedback(repo_id, feedback_type):
if repo_id not in st.session_state.feedback:
st.session_state.feedback[repo_id] = {'likes': 0, 'dislikes': 0}
st.session_state.feedback[repo_id][feedback_type] += 1
# Load resources
data, tokenizer, model = load_data_and_model()
data = precompute_embeddings(data, model, tokenizer)
# Main App Interface
st.title("Enhanced Repository Recommender System π")
# Sidebar for History and Stats
with st.sidebar:
st.header("π Search History")
if st.session_state.history:
for idx, item in enumerate(st.session_state.history[-5:]): # Show last 5 searches
with st.expander(f"Search {len(st.session_state.history)-idx}: {item['query'][:30]}..."):
st.write(f"Time: {item['timestamp']}")
st.write(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
else:
st.write("No search history yet")
st.header("π Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
feedback_df = pd.DataFrame(st.session_state.feedback).T
feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
st.bar_chart(feedback_df[['likes', 'dislikes']])
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("π Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query.strip():
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_embedding(model, tokenizer, user_query)
data['similarity'] = data['embedding'].apply(
lambda x: cosine_similarity([query_embedding], [x])[0][0]
)
recommendations = data.nlargest(top_n, 'similarity')
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
# Repository details
col1, col2 = st.columns([2, 1])
with col1:
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
if st.button("π", key=f"like_{idx}"):
save_feedback(row['repo'], 'likes')
st.success("Thanks for your feedback!")
with feedback_col2:
if st.button("π", key=f"dislike_{idx}"):
save_feedback(row['repo'], 'dislikes')
st.success("Thanks for your feedback!")
# Case Study Tab
with st.expander("π Case Study Brief"):
st.markdown(generate_case_study(row))
# Documentation Tab
if row['docstring']:
with st.expander("π Documentation"):
st.markdown(row['docstring'])
# Footer
st.markdown("---")
st.markdown(
"""
Made with π€ using CodeT5 and Streamlit |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
Model: CodeT5-Small
"""
)
|