|
import gradio as gr |
|
import os |
|
import io |
|
import png |
|
import tensorflow as tf |
|
import tensorflow_text as tf_text |
|
import tensorflow_hub as tf_hub |
|
import numpy as np |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download, HfFolder |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import traceback |
|
import time |
|
import pandas as pd |
|
|
|
|
|
MODEL_REPO_ID = "google/cxr-foundation" |
|
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' |
|
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1 |
|
POSITIVE_SIMILARITY_THRESHOLD = 0.1 |
|
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}") |
|
|
|
|
|
criteria_list_positive = [ |
|
"optimal centering", "optimal inspiration", "optimal penetration", |
|
"complete field of view", "scapulae retracted", "sharp image", "artifact free" |
|
] |
|
criteria_list_negative = [ |
|
"poorly centered", "poor inspiration", "non-diagnostic exposure", |
|
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact" |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
def bert_tokenize(text, preprocessor): |
|
if preprocessor is None: raise ValueError("BERT preprocessor no está cargado.") |
|
if not isinstance(text, str): text = str(text) |
|
out = preprocessor(tf.constant([text.lower()])) |
|
ids = out['input_word_ids'].numpy().astype(np.int32) |
|
masks = out['input_mask'].numpy().astype(np.float32) |
|
paddings = 1.0 - masks |
|
end_token_idx = (ids == 102) |
|
ids[end_token_idx] = 0 |
|
paddings[end_token_idx] = 1.0 |
|
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1) |
|
if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1) |
|
expected_shape = (1, 1, 128) |
|
if ids.shape != expected_shape: |
|
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1) |
|
else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}") |
|
if paddings.shape != expected_shape: |
|
if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1) |
|
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}") |
|
return ids, paddings |
|
|
|
def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example: |
|
if image_array.ndim == 3 and image_array.shape[2] == 1: |
|
image_array = np.squeeze(image_array, axis=2) |
|
elif image_array.ndim != 2: |
|
raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}') |
|
image = image_array.astype(np.float32) |
|
min_val, max_val = image.min(), image.max() |
|
if max_val <= min_val: |
|
if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255): |
|
pixel_array = image.astype(np.uint8); bitdepth = 8 |
|
else: |
|
pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16 |
|
else: |
|
image -= min_val |
|
current_max = max_val - min_val |
|
if image_array.dtype != np.uint8: |
|
image *= 65535 / current_max |
|
pixel_array = image.astype(np.uint16); bitdepth = 16 |
|
else: |
|
image *= 255 / current_max |
|
pixel_array = image.astype(np.uint8); bitdepth = 8 |
|
output = io.BytesIO() |
|
png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0], greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist()) |
|
example = tf.train.Example() |
|
features = example.features.feature |
|
features['image/encoded'].bytes_list.value.append(output.getvalue()) |
|
features['image/format'].bytes_list.value.append(b'png') |
|
return example |
|
|
|
def generate_image_embedding(img_np, elixrc_infer, qformer_infer): |
|
if elixrc_infer is None or qformer_infer is None: raise ValueError("Modelos ELIXR-C o QFormer no cargados.") |
|
try: |
|
serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString() |
|
elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example])) |
|
elixrc_embedding = elixrc_output['feature_maps_0'].numpy() |
|
qformer_input_img = { |
|
'image_feature': elixrc_embedding.tolist(), |
|
'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), |
|
'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), |
|
} |
|
qformer_output_img = qformer_infer(**qformer_input_img) |
|
image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy() |
|
if image_embedding.ndim > 2: |
|
image_embedding = np.mean(image_embedding, axis=tuple(range(1, image_embedding.ndim - 1))) |
|
if image_embedding.ndim == 1: image_embedding = np.expand_dims(image_embedding, axis=0) |
|
if image_embedding.ndim != 2: raise ValueError(f"Embedding final no tiene 2 dims: {image_embedding.shape}") |
|
return image_embedding |
|
except Exception as e: |
|
print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise |
|
|
|
def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer): |
|
if image_embedding is None: raise ValueError("Embedding imagen es None.") |
|
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.") |
|
if qformer_infer is None: raise ValueError("QFormer es None.") |
|
detailed_results = {} |
|
print("\n--- Calculando similitudes ---") |
|
for i in range(len(criteria_list_positive)): |
|
positive_text, negative_text = criteria_list_positive[i], criteria_list_negative[i] |
|
criterion_name = positive_text |
|
print(f"Procesando: \"{criterion_name}\"") |
|
similarity_positive, similarity_negative, difference = None, None, None |
|
classification_comp, classification_simp = "ERROR", "ERROR" |
|
try: |
|
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor) |
|
qformer_input_pos = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist()} |
|
text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy() |
|
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0) |
|
|
|
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor) |
|
qformer_input_neg = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist()} |
|
text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_emb'].numpy() |
|
if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0) |
|
|
|
if image_embedding.shape[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})") |
|
if image_embedding.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Neg ({text_embedding_neg.shape[1]})") |
|
|
|
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0] |
|
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0] |
|
|
|
difference = similarity_positive - similarity_negative |
|
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL" |
|
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL" |
|
print(f" Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}") |
|
except Exception as e: |
|
print(f" ERROR criterio '{criterion_name}': {e}"); traceback.print_exc() |
|
detailed_results[criterion_name] = { |
|
'positive_prompt': positive_text, 'negative_prompt': negative_text, |
|
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None, |
|
'similarity_negative': float(similarity_negative) if similarity_negative is not None else None, |
|
'difference': float(difference) if difference is not None else None, |
|
'classification_comparative': classification_comp, 'classification_simplified': classification_simp |
|
} |
|
return detailed_results |
|
|
|
|
|
print("--- Iniciando carga global de modelos ---") |
|
start_time = time.time() |
|
models_loaded = False |
|
bert_preprocessor_global = None |
|
elixrc_infer_global = None |
|
qformer_infer_global = None |
|
try: |
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
|
|
|
|
|
|
|
|
os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True) |
|
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}") |
|
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR, |
|
allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'], |
|
local_dir_use_symlinks=False, token=hf_token) |
|
print("Modelos descargados/verificados.") |
|
|
|
print("Cargando Preprocesador BERT...") |
|
bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" |
|
bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle) |
|
print("Preprocesador BERT cargado.") |
|
|
|
print("Cargando ELIXR-C...") |
|
elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled') |
|
elixrc_model = tf.saved_model.load(elixrc_model_path) |
|
elixrc_infer_global = elixrc_model.signatures['serving_default'] |
|
print("Modelo ELIXR-C cargado.") |
|
|
|
print("Cargando QFormer (ELIXR-B Text)...") |
|
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text') |
|
qformer_model = tf.saved_model.load(qformer_model_path) |
|
qformer_infer_global = qformer_model.signatures['serving_default'] |
|
print("Modelo QFormer cargado.") |
|
|
|
models_loaded = True |
|
end_time = time.time() |
|
print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---") |
|
except Exception as e: |
|
models_loaded = False |
|
print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---"); print(e); traceback.print_exc() |
|
|
|
|
|
def assess_quality_and_update_ui(image_pil): |
|
"""Procesa la imagen y devuelve actualizaciones para la UI.""" |
|
if not models_loaded: |
|
raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.") |
|
if image_pil is None: |
|
|
|
return ( |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
None, |
|
gr.update(value="N/A"), |
|
pd.DataFrame(), |
|
None |
|
) |
|
|
|
print("\n--- Iniciando evaluación para nueva imagen ---") |
|
start_process_time = time.time() |
|
try: |
|
|
|
img_np = np.array(image_pil.convert('L')) |
|
|
|
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global) |
|
|
|
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global) |
|
|
|
output_data, passed_count, total_count = [], 0, 0 |
|
for criterion, details in detailed_results.items(): |
|
total_count += 1 |
|
sim_pos = details['similarity_positive'] |
|
sim_neg = details['similarity_negative'] |
|
diff = details['difference'] |
|
comp = details['classification_comparative'] |
|
simp = details['classification_simplified'] |
|
output_data.append([ criterion, f"{sim_pos:.4f}" if sim_pos else "N/A", |
|
f"{sim_neg:.4f}" if sim_neg else "N/A", f"{diff:.4f}" if diff else "N/A", comp, simp ]) |
|
if comp == "PASS": passed_count += 1 |
|
df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ]) |
|
overall_quality = "Error"; pass_rate = 0 |
|
if total_count > 0: |
|
pass_rate = passed_count / total_count |
|
if pass_rate >= 0.85: overall_quality = "Excellent" |
|
elif pass_rate >= 0.70: overall_quality = "Good" |
|
elif pass_rate >= 0.50: overall_quality = "Fair" |
|
else: overall_quality = "Poor" |
|
quality_label = f"{overall_quality} ({passed_count}/{total_count} passed)" |
|
end_process_time = time.time() |
|
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg ---") |
|
|
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
image_pil, |
|
gr.update(value=quality_label), |
|
df_results, |
|
detailed_results |
|
) |
|
except Exception as e: |
|
print(f"Error durante procesamiento Gradio: {e}"); traceback.print_exc() |
|
raise gr.Error(f"Error procesando imagen: {str(e)}") |
|
|
|
|
|
def reset_ui(): |
|
print("Reseteando UI...") |
|
return ( |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
None, |
|
None, |
|
gr.update(value="N/A"), |
|
pd.DataFrame(), |
|
None |
|
) |
|
|
|
|
|
|
|
dark_theme = gr.themes.Default( |
|
primary_hue=gr.themes.colors.blue, |
|
secondary_hue=gr.themes.colors.blue, |
|
neutral_hue=gr.themes.colors.gray, |
|
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], |
|
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"], |
|
).set( |
|
|
|
body_background_fill="#111827", |
|
background_fill_primary="#1f2937", |
|
background_fill_secondary="#374151", |
|
block_background_fill="#1f2937", |
|
|
|
|
|
body_text_color="#d1d5db", |
|
text_color_subdued="#9ca3af", |
|
block_label_text_color="#d1d5db", |
|
block_title_text_color="#ffffff", |
|
|
|
|
|
border_color_accent="#374151", |
|
border_color_primary="#4b5563", |
|
|
|
|
|
button_primary_background_fill="*primary_600", |
|
button_primary_text_color="#ffffff", |
|
button_secondary_background_fill="*neutral_700", |
|
button_secondary_text_color="#ffffff", |
|
input_background_fill="#374151", |
|
input_border_color="#4b5563", |
|
input_text_color="#ffffff", |
|
|
|
|
|
shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px", |
|
block_shadow="rgba(0,0,0,0.2) 0px 2px 5px", |
|
radius_size="*radius_lg", |
|
) |
|
|
|
|
|
|
|
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo: |
|
|
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
# <span style="color: #e5e7eb;">CXR Quality Assessment</span> |
|
<p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p> |
|
""", |
|
elem_id="app-header" |
|
) |
|
|
|
|
|
with gr.Row(equal_height=False): |
|
|
|
|
|
with gr.Column(scale=1, min_width=350): |
|
gr.Markdown("### 1. Upload Image", elem_id="upload-title") |
|
input_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300) |
|
with gr.Row(): |
|
analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2) |
|
reset_btn = gr.Button("Reset", variant="secondary", scale=1) |
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown( |
|
"<p style='color:#9ca3af; font-size:0.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>" |
|
) |
|
|
|
|
|
|
|
with gr.Column(scale=2): |
|
|
|
|
|
with gr.Column(visible=True, elem_id="welcome-section") as welcome_block: |
|
gr.Markdown( |
|
""" |
|
### Welcome! |
|
Upload a chest X-ray image (PNG, JPG, etc.) on the left panel and click "Analyze Image". |
|
|
|
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family. |
|
The results will appear here once the analysis is complete. |
|
""", elem_id="welcome-text" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(visible=False, elem_id="results-section") as results_block: |
|
gr.Markdown("### 2. Quality Assessment Results", elem_id="results-title") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False) |
|
with gr.Column(scale=1): |
|
gr.Markdown("#### Summary", elem_id="summary-title") |
|
output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label") |
|
|
|
|
|
gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title") |
|
output_dataframe = gr.DataFrame( |
|
headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"], |
|
label=None, |
|
wrap=True, |
|
|
|
|
|
max_rows=10, |
|
overflow_row_behaviour="show_ends", |
|
interactive=False, |
|
elem_id="results-dataframe" |
|
) |
|
with gr.Accordion("Raw JSON Output (for debugging)", open=False): |
|
output_json = gr.JSON(label=None) |
|
|
|
gr.Markdown( |
|
f""" |
|
#### Technical Notes |
|
* **Criterion:** Quality aspect evaluated. |
|
* **Sim (+/-):** Cosine similarity with positive/negative prompt. |
|
* **Difference:** Sim (+) - Sim (-). |
|
* **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}. (Main Result) |
|
* **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}. |
|
""", elem_id="notes-text" |
|
) |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
---- |
|
<p style='text-align:center; color:#9ca3af; font-size:0.8em;'> |
|
CXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio |
|
</p> |
|
""", elem_id="app-footer" |
|
) |
|
|
|
|
|
|
|
analyze_btn.click( |
|
fn=assess_quality_and_update_ui, |
|
inputs=[input_image], |
|
outputs=[ |
|
welcome_block, |
|
results_block, |
|
output_image, |
|
output_label, |
|
output_dataframe, |
|
output_json |
|
] |
|
) |
|
|
|
reset_btn.click( |
|
fn=reset_ui, |
|
inputs=None, |
|
outputs=[ |
|
welcome_block, |
|
results_block, |
|
input_image, |
|
output_image, |
|
output_label, |
|
output_dataframe, |
|
output_json |
|
] |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860) |