import gradio as gr import os import io import png import tensorflow as tf import tensorflow_text as tf_text import tensorflow_hub as tf_hub import numpy as np from PIL import Image from huggingface_hub import snapshot_download, HfFolder from sklearn.metrics.pairwise import cosine_similarity import traceback import time import pandas as pd # Para formatear la salida en tabla # --- Configuración --- MODEL_REPO_ID = "google/cxr-foundation" MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' SIMILARITY_DIFFERENCE_THRESHOLD = 0.1 POSITIVE_SIMILARITY_THRESHOLD = 0.1 print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}") # --- Prompts --- criteria_list_positive = [ "optimal centering", "optimal inspiration", "optimal penetration", "complete field of view", "scapulae retracted", "sharp image", "artifact free" ] criteria_list_negative = [ "poorly centered", "poor inspiration", "non-diagnostic exposure", "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact" ] # --- Funciones Auxiliares (MISMAS que en la versión anterior de Gradio) --- # @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # def preprocess_text(text): # return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado def bert_tokenize(text, preprocessor): if preprocessor is None: raise ValueError("BERT preprocessor no está cargado.") if not isinstance(text, str): text = str(text) out = preprocessor(tf.constant([text.lower()])) ids = out['input_word_ids'].numpy().astype(np.int32) masks = out['input_mask'].numpy().astype(np.float32) paddings = 1.0 - masks end_token_idx = (ids == 102) ids[end_token_idx] = 0 paddings[end_token_idx] = 1.0 if ids.ndim == 2: ids = np.expand_dims(ids, axis=1) if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1) expected_shape = (1, 1, 128) if ids.shape != expected_shape: if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1) else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}") if paddings.shape != expected_shape: if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1) else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}") return ids, paddings def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example: if image_array.ndim == 3 and image_array.shape[2] == 1: image_array = np.squeeze(image_array, axis=2) elif image_array.ndim != 2: raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}') image = image_array.astype(np.float32) min_val, max_val = image.min(), image.max() if max_val <= min_val: if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255): pixel_array = image.astype(np.uint8); bitdepth = 8 else: pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16 else: image -= min_val current_max = max_val - min_val if image_array.dtype != np.uint8: image *= 65535 / current_max pixel_array = image.astype(np.uint16); bitdepth = 16 else: image *= 255 / current_max pixel_array = image.astype(np.uint8); bitdepth = 8 output = io.BytesIO() png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0], greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist()) example = tf.train.Example() features = example.features.feature features['image/encoded'].bytes_list.value.append(output.getvalue()) features['image/format'].bytes_list.value.append(b'png') return example def generate_image_embedding(img_np, elixrc_infer, qformer_infer): if elixrc_infer is None or qformer_infer is None: raise ValueError("Modelos ELIXR-C o QFormer no cargados.") try: serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString() elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example])) elixrc_embedding = elixrc_output['feature_maps_0'].numpy() qformer_input_img = { 'image_feature': elixrc_embedding.tolist(), 'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(), 'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(), } qformer_output_img = qformer_infer(**qformer_input_img) image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy() if image_embedding.ndim > 2: image_embedding = np.mean(image_embedding, axis=tuple(range(1, image_embedding.ndim - 1))) if image_embedding.ndim == 1: image_embedding = np.expand_dims(image_embedding, axis=0) if image_embedding.ndim != 2: raise ValueError(f"Embedding final no tiene 2 dims: {image_embedding.shape}") return image_embedding except Exception as e: print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer): if image_embedding is None: raise ValueError("Embedding imagen es None.") if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.") if qformer_infer is None: raise ValueError("QFormer es None.") detailed_results = {} print("\n--- Calculando similitudes ---") for i in range(len(criteria_list_positive)): positive_text, negative_text = criteria_list_positive[i], criteria_list_negative[i] criterion_name = positive_text print(f"Procesando: \"{criterion_name}\"") similarity_positive, similarity_negative, difference = None, None, None classification_comp, classification_simp = "ERROR", "ERROR" try: tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor) qformer_input_pos = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist()} text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy() if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0) tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor) qformer_input_neg = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist()} text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_emb'].numpy() if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0) if image_embedding.shape[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})") if image_embedding.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Neg ({text_embedding_neg.shape[1]})") similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0] similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0] difference = similarity_positive - similarity_negative classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL" classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL" print(f" Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}") except Exception as e: print(f" ERROR criterio '{criterion_name}': {e}"); traceback.print_exc() detailed_results[criterion_name] = { 'positive_prompt': positive_text, 'negative_prompt': negative_text, 'similarity_positive': float(similarity_positive) if similarity_positive is not None else None, 'similarity_negative': float(similarity_negative) if similarity_negative is not None else None, 'difference': float(difference) if difference is not None else None, 'classification_comparative': classification_comp, 'classification_simplified': classification_simp } return detailed_results # --- Carga Global de Modelos --- print("--- Iniciando carga global de modelos ---") start_time = time.time() models_loaded = False bert_preprocessor_global = None elixrc_infer_global = None qformer_infer_global = None try: # Añadir token si es necesario (para repos privados o gated) hf_token = os.environ.get("HF_TOKEN") # Leer token desde secretos del Space # if hf_token: # print("Usando HF_TOKEN para autenticación.") # HfFolder.save_token(hf_token) os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True) print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}") snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR, allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'], local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí print("Modelos descargados/verificados.") print("Cargando Preprocesador BERT...") bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle) print("Preprocesador BERT cargado.") print("Cargando ELIXR-C...") elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled') elixrc_model = tf.saved_model.load(elixrc_model_path) elixrc_infer_global = elixrc_model.signatures['serving_default'] print("Modelo ELIXR-C cargado.") print("Cargando QFormer (ELIXR-B Text)...") qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text') qformer_model = tf.saved_model.load(qformer_model_path) qformer_infer_global = qformer_model.signatures['serving_default'] print("Modelo QFormer cargado.") models_loaded = True end_time = time.time() print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---") except Exception as e: models_loaded = False print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---"); print(e); traceback.print_exc() # --- Función Principal de Procesamiento para Gradio --- def assess_quality_and_update_ui(image_pil): """Procesa la imagen y devuelve actualizaciones para la UI.""" if not models_loaded: raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.") if image_pil is None: # Devuelve valores por defecto/vacíos y controla la visibilidad return ( gr.update(visible=True), # Muestra bienvenida gr.update(visible=False), # Oculta resultados None, # Borra imagen de salida gr.update(value="N/A"), # Borra etiqueta pd.DataFrame(), # Borra dataframe None # Borra JSON ) print("\n--- Iniciando evaluación para nueva imagen ---") start_process_time = time.time() try: # 1. Convertir a NumPy img_np = np.array(image_pil.convert('L')) # 2. Generar Embedding image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global) # 3. Clasificar detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global) # 4. Formatear Resultados output_data, passed_count, total_count = [], 0, 0 for criterion, details in detailed_results.items(): total_count += 1 sim_pos = details['similarity_positive'] sim_neg = details['similarity_negative'] diff = details['difference'] comp = details['classification_comparative'] simp = details['classification_simplified'] output_data.append([ criterion, f"{sim_pos:.4f}" if sim_pos else "N/A", f"{sim_neg:.4f}" if sim_neg else "N/A", f"{diff:.4f}" if diff else "N/A", comp, simp ]) if comp == "PASS": passed_count += 1 df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ]) overall_quality = "Error"; pass_rate = 0 if total_count > 0: pass_rate = passed_count / total_count if pass_rate >= 0.85: overall_quality = "Excellent" elif pass_rate >= 0.70: overall_quality = "Good" elif pass_rate >= 0.50: overall_quality = "Fair" else: overall_quality = "Poor" quality_label = f"{overall_quality} ({passed_count}/{total_count} passed)" end_process_time = time.time() print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg ---") # Devolver resultados y actualizar visibilidad return ( gr.update(visible=False), # Oculta bienvenida gr.update(visible=True), # Muestra resultados image_pil, # Muestra imagen procesada gr.update(value=quality_label), # Actualiza etiqueta df_results, # Actualiza dataframe detailed_results # Actualiza JSON ) except Exception as e: print(f"Error durante procesamiento Gradio: {e}"); traceback.print_exc() raise gr.Error(f"Error procesando imagen: {str(e)}") # --- Función para Resetear la UI --- def reset_ui(): print("Reseteando UI...") return ( gr.update(visible=True), # Muestra bienvenida gr.update(visible=False), # Oculta resultados None, # Borra imagen de entrada None, # Borra imagen de salida gr.update(value="N/A"), # Borra etiqueta pd.DataFrame(), # Borra dataframe None # Borra JSON ) # --- Definir Tema Oscuro Personalizado --- # Inspirado en los colores del HTML original y Tailwind dark grays/blues dark_theme = gr.themes.Default( primary_hue=gr.themes.colors.blue, # Azul como color primario secondary_hue=gr.themes.colors.blue, # Azul secundario neutral_hue=gr.themes.colors.gray, # Gris neutro font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"], ).set( # Fondos body_background_fill="#111827", # Fondo principal muy oscuro (gray-900) background_fill_primary="#1f2937", # Fondo de componentes (gray-800) background_fill_secondary="#374151", # Fondo secundario (gray-700) block_background_fill="#1f2937", # Fondo de bloques (gray-800) # Texto body_text_color="#d1d5db", # Texto principal claro (gray-300) text_color_subdued="#9ca3af", # Texto secundario (gray-400) block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300) block_title_text_color="#ffffff", # Títulos de bloque (blanco) # Bordes border_color_accent="#374151", # Borde (gray-700) border_color_primary="#4b5563", # Borde primario (gray-600) # Botones y Elementos Interactivos button_primary_background_fill="*primary_600", # Usa color primario (azul) button_primary_text_color="#ffffff", button_secondary_background_fill="*neutral_700", button_secondary_text_color="#ffffff", input_background_fill="#374151", # Fondo de inputs (gray-700) input_border_color="#4b5563", # Borde de inputs (gray-600) input_text_color="#ffffff", # Texto en inputs # Sombras y Radios shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px", block_shadow="rgba(0,0,0,0.2) 0px 2px 5px", radius_size="*radius_lg", # Bordes redondeados ) # --- Definir la Interfaz Gradio con Bloques y Tema --- with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo: # --- Cabecera --- with gr.Row(): gr.Markdown( """ # CXR Quality Assessment
Evaluate chest X-ray technical quality using AI (ELIXR family)
""", # Usar blanco/gris claro para texto cabecera elem_id="app-header" ) # --- Contenido Principal (Dos Columnas) --- with gr.Row(equal_height=False): # Permitir alturas diferentes # --- Columna Izquierda (Carga) --- with gr.Column(scale=1, min_width=350): gr.Markdown("### 1. Upload Image", elem_id="upload-title") input_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada with gr.Row(): analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2) reset_btn = gr.Button("Reset", variant="secondary", scale=1) # Añadir ejemplos si tienes imágenes de ejemplo # gr.Examples( # examples=[os.path.join("examples", "sample_cxr.png")], # inputs=input_image, label="Example CXR" # ) gr.Markdown( "Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.
" ) # --- Columna Derecha (Bienvenida / Resultados) --- with gr.Column(scale=2): # --- Bloque de Bienvenida (Visible Inicialmente) --- with gr.Column(visible=True, elem_id="welcome-section") as welcome_block: gr.Markdown( """ ### Welcome! Upload a chest X-ray image (PNG, JPG, etc.) on the left panel and click "Analyze Image". The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family. The results will appear here once the analysis is complete. """, elem_id="welcome-text" ) # Podrías añadir un icono o imagen aquí si quieres # gr.Image("path/to/welcome_icon.png", interactive=False, show_label=False, show_download_button=False) # --- Bloque de Resultados (Oculto Inicialmente) --- with gr.Column(visible=False, elem_id="results-section") as results_block: gr.Markdown("### 2. Quality Assessment Results", elem_id="results-title") with gr.Row(): # Fila para imagen de salida y resumen with gr.Column(scale=1): output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False) with gr.Column(scale=1): gr.Markdown("#### Summary", elem_id="summary-title") output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label") # Podríamos añadir más texto de resumen aquí si quisiéramos gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title") output_dataframe = gr.DataFrame( headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"], label=None, # Quitar etiqueta redundante wrap=True, # La altura ahora se maneja mejor automáticamente o con CSS # row_count=(7, "dynamic") # Mostrar 7 filas, permitir scroll si hay más max_rows=10, # Limitar filas visibles con scroll overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll interactive=False, # No editable elem_id="results-dataframe" ) with gr.Accordion("Raw JSON Output (for debugging)", open=False): output_json = gr.JSON(label=None) gr.Markdown( f""" #### Technical Notes * **Criterion:** Quality aspect evaluated. * **Sim (+/-):** Cosine similarity with positive/negative prompt. * **Difference:** Sim (+) - Sim (-). * **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}. (Main Result) * **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}. """, elem_id="notes-text" ) # --- Pie de página --- gr.Markdown( """ ----CXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
""", elem_id="app-footer" ) # --- Conexiones de Eventos --- analyze_btn.click( fn=assess_quality_and_update_ui, inputs=[input_image], outputs=[ welcome_block, # -> actualiza visibilidad bienvenida results_block, # -> actualiza visibilidad resultados output_image, # -> muestra imagen analizada output_label, # -> actualiza etiqueta resumen output_dataframe, # -> actualiza tabla output_json # -> actualiza JSON ] ) reset_btn.click( fn=reset_ui, inputs=None, # No necesita inputs outputs=[ welcome_block, results_block, input_image, # -> limpia imagen entrada output_image, output_label, output_dataframe, output_json ] ) # --- Iniciar la Aplicación Gradio --- if __name__ == "__main__": # server_name="0.0.0.0" para accesibilidad en red local # server_port=7860 es el puerto estándar de HF Spaces # auth=("user", "password") # Si quieres añadir autenticación básica localmente demo.launch(server_name="0.0.0.0", server_port=7860) #, share=True) # Quita share=True para despliegue normal