File size: 22,591 Bytes
4790918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
 
 
4790918
 
 
 
 
 
 
 
 
 
 
 
6045f26
 
 
 
4790918
 
6045f26
4790918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
4790918
6045f26
4790918
6045f26
4790918
 
6045f26
 
 
4790918
6045f26
4790918
 
 
6045f26
4790918
 
6045f26
4790918
6045f26
4790918
 
6045f26
4790918
 
 
 
6045f26
4790918
 
 
 
 
 
6045f26
 
4790918
 
 
 
6045f26
 
 
4790918
 
6045f26
4790918
 
6045f26
4790918
 
 
6045f26
4790918
6045f26
 
 
4790918
 
 
 
6045f26
 
4790918
 
 
6045f26
 
4790918
 
6045f26
 
4790918
 
 
 
 
 
 
6045f26
4790918
6045f26
4790918
6045f26
4790918
 
 
6045f26
4790918
 
 
 
 
 
 
 
 
 
 
6045f26
 
 
 
 
4790918
 
 
 
 
6045f26
4790918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045f26
4790918
 
6045f26
 
4790918
 
 
6045f26
 
 
 
 
 
 
 
 
4790918
 
 
 
6045f26
4790918
6045f26
4790918
6045f26
4790918
6045f26
 
4790918
 
6045f26
 
 
 
 
 
 
 
 
 
4790918
 
 
 
 
 
6045f26
4790918
6045f26
 
 
 
 
 
 
 
 
 
4790918
6045f26
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
6045f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
6045f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
 
6045f26
 
4790918
6045f26
 
 
 
 
 
4790918
6045f26
 
 
 
 
 
 
 
 
 
 
4790918
6045f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
 
6045f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790918
 
6045f26
4790918
6045f26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import gradio as gr
import os
import io
import png
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as tf_hub
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download, HfFolder
from sklearn.metrics.pairwise import cosine_similarity
import traceback
import time
import pandas as pd # Para formatear la salida en tabla

# --- Configuración ---
MODEL_REPO_ID = "google/cxr-foundation"
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
POSITIVE_SIMILARITY_THRESHOLD = 0.1
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")

# --- Prompts ---
criteria_list_positive = [
    "optimal centering", "optimal inspiration", "optimal penetration",
    "complete field of view", "scapulae retracted", "sharp image", "artifact free"
]
criteria_list_negative = [
    "poorly centered", "poor inspiration", "non-diagnostic exposure",
    "cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
]

# --- Funciones Auxiliares (MISMAS que en la versión anterior de Gradio) ---
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)])
# def preprocess_text(text):
#     return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado

def bert_tokenize(text, preprocessor):
    if preprocessor is None: raise ValueError("BERT preprocessor no está cargado.")
    if not isinstance(text, str): text = str(text)
    out = preprocessor(tf.constant([text.lower()]))
    ids = out['input_word_ids'].numpy().astype(np.int32)
    masks = out['input_mask'].numpy().astype(np.float32)
    paddings = 1.0 - masks
    end_token_idx = (ids == 102)
    ids[end_token_idx] = 0
    paddings[end_token_idx] = 1.0
    if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
    if paddings.ndim == 2: paddings = np.expand_dims(paddings, axis=1)
    expected_shape = (1, 1, 128)
    if ids.shape != expected_shape:
         if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
         else: raise ValueError(f"Shape incorrecta para ids: {ids.shape}, esperado {expected_shape}")
    if paddings.shape != expected_shape:
         if paddings.shape == (1,128): paddings = np.expand_dims(paddings, axis=1)
         else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
    return ids, paddings

def png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
    if image_array.ndim == 3 and image_array.shape[2] == 1:
        image_array = np.squeeze(image_array, axis=2)
    elif image_array.ndim != 2:
        raise ValueError(f'Array debe ser 2-D. Dimensiones: {image_array.ndim}')
    image = image_array.astype(np.float32)
    min_val, max_val = image.min(), image.max()
    if max_val <= min_val:
        if image_array.dtype == np.uint8 or (min_val >= 0 and max_val <= 255):
             pixel_array = image.astype(np.uint8); bitdepth = 8
        else:
             pixel_array = np.zeros_like(image, dtype=np.uint16); bitdepth = 16
    else:
        image -= min_val
        current_max = max_val - min_val
        if image_array.dtype != np.uint8:
            image *= 65535 / current_max
            pixel_array = image.astype(np.uint16); bitdepth = 16
        else:
            image *= 255 / current_max
            pixel_array = image.astype(np.uint8); bitdepth = 8
    output = io.BytesIO()
    png.Writer(width=pixel_array.shape[1], height=pixel_array.shape[0], greyscale=True, bitdepth=bitdepth).write(output, pixel_array.tolist())
    example = tf.train.Example()
    features = example.features.feature
    features['image/encoded'].bytes_list.value.append(output.getvalue())
    features['image/format'].bytes_list.value.append(b'png')
    return example

def generate_image_embedding(img_np, elixrc_infer, qformer_infer):
    if elixrc_infer is None or qformer_infer is None: raise ValueError("Modelos ELIXR-C o QFormer no cargados.")
    try:
        serialized_img_tf_example = png_to_tfexample(img_np).SerializeToString()
        elixrc_output = elixrc_infer(input_example=tf.constant([serialized_img_tf_example]))
        elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
        qformer_input_img = {
            'image_feature': elixrc_embedding.tolist(),
            'ids': np.zeros((1, 1, 128), dtype=np.int32).tolist(),
            'paddings': np.ones((1, 1, 128), dtype=np.float32).tolist(),
        }
        qformer_output_img = qformer_infer(**qformer_input_img)
        image_embedding = qformer_output_img['all_contrastive_img_emb'].numpy()
        if image_embedding.ndim > 2:
            image_embedding = np.mean(image_embedding, axis=tuple(range(1, image_embedding.ndim - 1)))
        if image_embedding.ndim == 1: image_embedding = np.expand_dims(image_embedding, axis=0)
        if image_embedding.ndim != 2: raise ValueError(f"Embedding final no tiene 2 dims: {image_embedding.shape}")
        return image_embedding
    except Exception as e:
        print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise

def calculate_similarities_and_classify(image_embedding, bert_preprocessor, qformer_infer):
    if image_embedding is None: raise ValueError("Embedding imagen es None.")
    if bert_preprocessor is None: raise ValueError("Preprocesador BERT es None.")
    if qformer_infer is None: raise ValueError("QFormer es None.")
    detailed_results = {}
    print("\n--- Calculando similitudes ---")
    for i in range(len(criteria_list_positive)):
        positive_text, negative_text = criteria_list_positive[i], criteria_list_negative[i]
        criterion_name = positive_text
        print(f"Procesando: \"{criterion_name}\"")
        similarity_positive, similarity_negative, difference = None, None, None
        classification_comp, classification_simp = "ERROR", "ERROR"
        try:
            tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessor)
            qformer_input_pos = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'paddings': paddings_pos.tolist()}
            text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy()
            if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0)

            tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
            qformer_input_neg = {'image_feature': np.zeros([1, 8, 8, 1376], dtype=np.float32).tolist(), 'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist()}
            text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_emb'].numpy()
            if text_embedding_neg.ndim == 1: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)

            if image_embedding.shape[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
            if image_embedding.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Neg ({text_embedding_neg.shape[1]})")

            similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
            similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]

            difference = similarity_positive - similarity_negative
            classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
            classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
            print(f"  Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}")
        except Exception as e:
            print(f"  ERROR criterio '{criterion_name}': {e}"); traceback.print_exc()
        detailed_results[criterion_name] = {
            'positive_prompt': positive_text, 'negative_prompt': negative_text,
            'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
            'similarity_negative': float(similarity_negative) if similarity_negative is not None else None,
            'difference': float(difference) if difference is not None else None,
            'classification_comparative': classification_comp, 'classification_simplified': classification_simp
        }
    return detailed_results

# --- Carga Global de Modelos ---
print("--- Iniciando carga global de modelos ---")
start_time = time.time()
models_loaded = False
bert_preprocessor_global = None
elixrc_infer_global = None
qformer_infer_global = None
try:
    # Añadir token si es necesario (para repos privados o gated)
    hf_token = os.environ.get("HF_TOKEN") # Leer token desde secretos del Space
    # if hf_token:
    #     print("Usando HF_TOKEN para autenticación.")
    #     HfFolder.save_token(hf_token)

    os.makedirs(MODEL_DOWNLOAD_DIR, exist_ok=True)
    print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")
    snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
                      allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixr-b-text/*'],
                      local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
    print("Modelos descargados/verificados.")

    print("Cargando Preprocesador BERT...")
    bert_preprocess_handle = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
    bert_preprocessor_global = tf_hub.KerasLayer(bert_preprocess_handle)
    print("Preprocesador BERT cargado.")

    print("Cargando ELIXR-C...")
    elixrc_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'elixr-c-v2-pooled')
    elixrc_model = tf.saved_model.load(elixrc_model_path)
    elixrc_infer_global = elixrc_model.signatures['serving_default']
    print("Modelo ELIXR-C cargado.")

    print("Cargando QFormer (ELIXR-B Text)...")
    qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, 'pax-elixr-b-text')
    qformer_model = tf.saved_model.load(qformer_model_path)
    qformer_infer_global = qformer_model.signatures['serving_default']
    print("Modelo QFormer cargado.")

    models_loaded = True
    end_time = time.time()
    print(f"--- Modelos cargados globalmente con éxito en {end_time - start_time:.2f} segundos ---")
except Exception as e:
    models_loaded = False
    print(f"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS ---"); print(e); traceback.print_exc()

# --- Función Principal de Procesamiento para Gradio ---
def assess_quality_and_update_ui(image_pil):
    """Procesa la imagen y devuelve actualizaciones para la UI."""
    if not models_loaded:
        raise gr.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
    if image_pil is None:
        # Devuelve valores por defecto/vacíos y controla la visibilidad
        return (
            gr.update(visible=True),  # Muestra bienvenida
            gr.update(visible=False), # Oculta resultados
            None,                     # Borra imagen de salida
            gr.update(value="N/A"),   # Borra etiqueta
            pd.DataFrame(),           # Borra dataframe
            None                      # Borra JSON
        )

    print("\n--- Iniciando evaluación para nueva imagen ---")
    start_process_time = time.time()
    try:
        # 1. Convertir a NumPy
        img_np = np.array(image_pil.convert('L'))
        # 2. Generar Embedding
        image_embedding = generate_image_embedding(img_np, elixrc_infer_global, qformer_infer_global)
        # 3. Clasificar
        detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_global)
        # 4. Formatear Resultados
        output_data, passed_count, total_count = [], 0, 0
        for criterion, details in detailed_results.items():
            total_count += 1
            sim_pos = details['similarity_positive']
            sim_neg = details['similarity_negative']
            diff = details['difference']
            comp = details['classification_comparative']
            simp = details['classification_simplified']
            output_data.append([ criterion, f"{sim_pos:.4f}" if sim_pos else "N/A",
                f"{sim_neg:.4f}" if sim_neg else "N/A", f"{diff:.4f}" if diff else "N/A", comp, simp ])
            if comp == "PASS": passed_count += 1
        df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
        overall_quality = "Error"; pass_rate = 0
        if total_count > 0:
            pass_rate = passed_count / total_count
            if pass_rate >= 0.85: overall_quality = "Excellent"
            elif pass_rate >= 0.70: overall_quality = "Good"
            elif pass_rate >= 0.50: overall_quality = "Fair"
            else: overall_quality = "Poor"
        quality_label = f"{overall_quality} ({passed_count}/{total_count} passed)"
        end_process_time = time.time()
        print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg ---")
        # Devolver resultados y actualizar visibilidad
        return (
            gr.update(visible=False), # Oculta bienvenida
            gr.update(visible=True),  # Muestra resultados
            image_pil,                # Muestra imagen procesada
            gr.update(value=quality_label), # Actualiza etiqueta
            df_results,               # Actualiza dataframe
            detailed_results          # Actualiza JSON
        )
    except Exception as e:
        print(f"Error durante procesamiento Gradio: {e}"); traceback.print_exc()
        raise gr.Error(f"Error procesando imagen: {str(e)}")

# --- Función para Resetear la UI ---
def reset_ui():
    print("Reseteando UI...")
    return (
        gr.update(visible=True),  # Muestra bienvenida
        gr.update(visible=False), # Oculta resultados
        None,                     # Borra imagen de entrada
        None,                     # Borra imagen de salida
        gr.update(value="N/A"),   # Borra etiqueta
        pd.DataFrame(),           # Borra dataframe
        None                      # Borra JSON
    )

# --- Definir Tema Oscuro Personalizado ---
# Inspirado en los colores del HTML original y Tailwind dark grays/blues
dark_theme = gr.themes.Default(
    primary_hue=gr.themes.colors.blue,       # Azul como color primario
    secondary_hue=gr.themes.colors.blue,     # Azul secundario
    neutral_hue=gr.themes.colors.gray,       # Gris neutro
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
    font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui-monospace", "Consolas", "monospace"],
).set(
    # Fondos
    body_background_fill="#111827",          # Fondo principal muy oscuro (gray-900)
    background_fill_primary="#1f2937",       # Fondo de componentes (gray-800)
    background_fill_secondary="#374151",     # Fondo secundario (gray-700)
    block_background_fill="#1f2937",         # Fondo de bloques (gray-800)

    # Texto
    body_text_color="#d1d5db",               # Texto principal claro (gray-300)
    text_color_subdued="#9ca3af",            # Texto secundario (gray-400)
    block_label_text_color="#d1d5db",        # Etiquetas de bloque (gray-300)
    block_title_text_color="#ffffff",        # Títulos de bloque (blanco)

    # Bordes
    border_color_accent="#374151",           # Borde (gray-700)
    border_color_primary="#4b5563",          # Borde primario (gray-600)

    # Botones y Elementos Interactivos
    button_primary_background_fill="*primary_600", # Usa color primario (azul)
    button_primary_text_color="#ffffff",
    button_secondary_background_fill="*neutral_700",
    button_secondary_text_color="#ffffff",
    input_background_fill="#374151",         # Fondo de inputs (gray-700)
    input_border_color="#4b5563",            # Borde de inputs (gray-600)
    input_text_color="#ffffff",              # Texto en inputs

    # Sombras y Radios
    shadow_drop="rgba(0,0,0,0.2) 0px 2px 4px",
    block_shadow="rgba(0,0,0,0.2) 0px 2px 5px",
    radius_size="*radius_lg",                # Bordes redondeados
)


# --- Definir la Interfaz Gradio con Bloques y Tema ---
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
    # --- Cabecera ---
    with gr.Row():
        gr.Markdown(
            """
            # <span style="color: #e5e7eb;">CXR Quality Assessment</span>
            <p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
            """, # Usar blanco/gris claro para texto cabecera
            elem_id="app-header"
        )

    # --- Contenido Principal (Dos Columnas) ---
    with gr.Row(equal_height=False): # Permitir alturas diferentes

        # --- Columna Izquierda (Carga) ---
        with gr.Column(scale=1, min_width=350):
            gr.Markdown("### 1. Upload Image", elem_id="upload-title")
            input_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada
            with gr.Row():
                 analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
                 reset_btn = gr.Button("Reset", variant="secondary", scale=1)
            # Añadir ejemplos si tienes imágenes de ejemplo
            # gr.Examples(
            #     examples=[os.path.join("examples", "sample_cxr.png")],
            #     inputs=input_image, label="Example CXR"
            # )
            gr.Markdown(
                "<p style='color:#9ca3af; font-size:0.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>"
            )


        # --- Columna Derecha (Bienvenida / Resultados) ---
        with gr.Column(scale=2):

            # --- Bloque de Bienvenida (Visible Inicialmente) ---
            with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
                gr.Markdown(
                    """
                    ### Welcome!
                    Upload a chest X-ray image (PNG, JPG, etc.) on the left panel and click "Analyze Image".

                    The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.
                    The results will appear here once the analysis is complete.
                    """, elem_id="welcome-text"
                )
                # Podrías añadir un icono o imagen aquí si quieres
                # gr.Image("path/to/welcome_icon.png", interactive=False, show_label=False, show_download_button=False)


            # --- Bloque de Resultados (Oculto Inicialmente) ---
            with gr.Column(visible=False, elem_id="results-section") as results_block:
                gr.Markdown("### 2. Quality Assessment Results", elem_id="results-title")
                with gr.Row(): # Fila para imagen de salida y resumen
                     with gr.Column(scale=1):
                          output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
                     with gr.Column(scale=1):
                          gr.Markdown("#### Summary", elem_id="summary-title")
                          output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
                          # Podríamos añadir más texto de resumen aquí si quisiéramos

                gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title")
                output_dataframe = gr.DataFrame(
                    headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
                    label=None, # Quitar etiqueta redundante
                    wrap=True,
                    # La altura ahora se maneja mejor automáticamente o con CSS
                    # row_count=(7, "dynamic") # Mostrar 7 filas, permitir scroll si hay más
                    max_rows=10, # Limitar filas visibles con scroll
                    overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
                    interactive=False, # No editable
                    elem_id="results-dataframe"
                )
                with gr.Accordion("Raw JSON Output (for debugging)", open=False):
                      output_json = gr.JSON(label=None)

                gr.Markdown(
                    f"""
                    #### Technical Notes
                    *   **Criterion:** Quality aspect evaluated.
                    *   **Sim (+/-):** Cosine similarity with positive/negative prompt.
                    *   **Difference:** Sim (+) - Sim (-).
                    *   **Assessment (Comp):** PASS if Difference > {SIMILARITY_DIFFERENCE_THRESHOLD}. (Main Result)
                    *   **Assessment (Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}.
                    """, elem_id="notes-text"
                )

    # --- Pie de página ---
    gr.Markdown(
        """
        ----
        <p style='text-align:center; color:#9ca3af; font-size:0.8em;'>
        CXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
        </p>
        """, elem_id="app-footer"
        )


    # --- Conexiones de Eventos ---
    analyze_btn.click(
        fn=assess_quality_and_update_ui,
        inputs=[input_image],
        outputs=[
            welcome_block,      # -> actualiza visibilidad bienvenida
            results_block,      # -> actualiza visibilidad resultados
            output_image,       # -> muestra imagen analizada
            output_label,       # -> actualiza etiqueta resumen
            output_dataframe,   # -> actualiza tabla
            output_json         # -> actualiza JSON
        ]
    )

    reset_btn.click(
        fn=reset_ui,
        inputs=None, # No necesita inputs
        outputs=[
            welcome_block,
            results_block,
            input_image,        # -> limpia imagen entrada
            output_image,
            output_label,
            output_dataframe,
            output_json
        ]
    )


# --- Iniciar la Aplicación Gradio ---
if __name__ == "__main__":
     # server_name="0.0.0.0" para accesibilidad en red local
     # server_port=7860 es el puerto estándar de HF Spaces
     # auth=("user", "password") # Si quieres añadir autenticación básica localmente
     demo.launch(server_name="0.0.0.0", server_port=7860) #, share=True) # Quita share=True para despliegue normal