Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
import gradio as gr | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import os | |
import io | |
import base64 | |
import json | |
from datetime import datetime | |
import torch.nn.functional as F | |
# Force CPU mode for Zero GPU environment | |
device = torch.device('cpu') | |
torch.set_num_threads(4) # Optimize CPU performance | |
# Style presets | |
STYLE_PRESETS = { | |
"Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0}, | |
"Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8}, | |
"Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2}, | |
"High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7}, | |
} | |
# History management | |
class HistoryManager: | |
def __init__(self, max_entries=10): | |
self.max_entries = max_entries | |
self.history_file = "processing_history.json" | |
self.history = self.load_history() | |
def load_history(self): | |
try: | |
if os.path.exists(self.history_file): | |
with open(self.history_file, 'r') as f: | |
return json.load(f) | |
return [] | |
except Exception: | |
return [] | |
def save_history(self): | |
try: | |
with open(self.history_file, 'w') as f: | |
json.dump(self.history[-self.max_entries:], f) | |
except Exception as e: | |
print(f"Error saving history: {e}") | |
def add_entry(self, input_path, settings): | |
entry = { | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"input_file": os.path.basename(input_path), | |
"settings": settings | |
} | |
self.history.append(entry) | |
if len(self.history) > self.max_entries: | |
self.history.pop(0) | |
self.save_history() | |
def get_latest_settings(self): | |
if self.history: | |
return self.history[-1]["settings"] | |
return None | |
# Initialize history manager | |
history_manager = HistoryManager() | |
[Previous model and generator code remains the same...] | |
def apply_preset(preset_name): | |
"""Apply a style preset and return the settings""" | |
if preset_name in STYLE_PRESETS: | |
return ( | |
STYLE_PRESETS[preset_name]["line_thickness"], | |
STYLE_PRESETS[preset_name]["contrast"], | |
STYLE_PRESETS[preset_name]["brightness"], | |
True # Enable enhancement for presets | |
) | |
return (1.0, 1.0, 1.0, False) | |
def save_image_with_metadata(image, output_path, settings): | |
"""Save image with processing metadata""" | |
try: | |
# Save image | |
image.save(output_path) | |
# Save metadata | |
metadata_path = output_path + ".json" | |
with open(metadata_path, 'w') as f: | |
json.dump({ | |
"processing_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"settings": settings | |
}, f) | |
except Exception as e: | |
print(f"Error saving image metadata: {e}") | |
def get_image_download_link(image): | |
"""Create a download link for the processed image""" | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
href = f'data:image/png;base64,{img_str}' | |
return href | |
def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0, | |
brightness=1.0, enable_enhancement=False, output_size="Original"): | |
try: | |
# Apply preset if selected | |
if preset_name != "Custom": | |
line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name) | |
# Open and process input image | |
original_img = Image.open(input_img) | |
original_size = original_img.size | |
# Adjust output size | |
if output_size != "Original": | |
width, height = map(int, output_size.split("x")) | |
target_size = (width, height) | |
else: | |
target_size = original_size | |
# Transform pipeline | |
transform = transforms.Compose([ | |
transforms.Resize(256, Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
input_tensor = transform(original_img).unsqueeze(0).to(device) | |
# Process through selected model | |
with torch.no_grad(): | |
if version == 'Simple Lines': | |
output = model2(input_tensor) | |
else: | |
output = model1(input_tensor) | |
# Apply line thickness adjustment | |
output = output * line_thickness | |
# Convert to image | |
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1)) | |
# Apply enhancements if enabled | |
if enable_enhancement: | |
output_img = enhance_lines(output_img, contrast, brightness) | |
# Resize to target size | |
output_img = output_img.resize(target_size, Image.BICUBIC) | |
# Save to history | |
settings = { | |
"version": version, | |
"preset": preset_name, | |
"line_thickness": line_thickness, | |
"contrast": contrast, | |
"brightness": brightness, | |
"enable_enhancement": enable_enhancement, | |
"output_size": output_size | |
} | |
history_manager.add_entry(input_img, settings) | |
return output_img | |
except Exception as e: | |
raise gr.Error(f"Error processing image: {str(e)}") | |
# Extended custom CSS | |
custom_css = """ | |
.gradio-container { | |
font-family: 'Helvetica Neue', Arial, sans-serif; | |
max-width: 1200px !important; | |
margin: auto; | |
} | |
.gr-button { | |
border-radius: 8px; | |
background: linear-gradient(45deg, #3498db, #2980b9); | |
border: none; | |
color: white; | |
transition: all 0.3s ease; | |
} | |
.gr-button:hover { | |
background: linear-gradient(45deg, #2980b9, #3498db); | |
transform: translateY(-2px); | |
box-shadow: 0 4px 12px rgba(0,0,0,0.15); | |
} | |
.gr-button.secondary { | |
background: linear-gradient(45deg, #95a5a6, #7f8c8d); | |
} | |
.gr-input { | |
border-radius: 8px; | |
border: 2px solid #3498db; | |
transition: all 0.3s ease; | |
} | |
.gr-input:focus { | |
border-color: #2980b9; | |
box-shadow: 0 0 0 2px rgba(41,128,185,0.2); | |
} | |
.gr-form { | |
border-radius: 12px; | |
box-shadow: 0 4px 12px rgba(0,0,0,0.1); | |
padding: 20px; | |
} | |
.gr-header { | |
text-align: center; | |
margin-bottom: 2em; | |
} | |
""" | |
# Create Gradio interface with enhanced UI | |
with gr.Blocks(css=custom_css) as iface: | |
with gr.Row(elem_classes="gr-header"): | |
gr.Markdown("# 🎨 Advanced Line Drawing Generator") | |
gr.Markdown("Transform your images into beautiful line drawings with advanced controls") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="filepath", label="Upload Image") | |
with gr.Row(): | |
version = gr.Radio( | |
choices=['Complex Lines', 'Simple Lines'], | |
value='Simple Lines', | |
label="Drawing Style" | |
) | |
preset_selector = gr.Dropdown( | |
choices=["Custom"] + list(STYLE_PRESETS.keys()), | |
value="Custom", | |
label="Style Preset" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
output_size = gr.Dropdown( | |
choices=["Original", "512x512", "1024x1024", "2048x2048"], | |
value="Original", | |
label="Output Size" | |
) | |
line_thickness = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
label="Line Thickness" | |
) | |
enable_enhancement = gr.Checkbox( | |
label="Enable Enhancement", | |
value=False | |
) | |
with gr.Group(visible=False) as enhancement_controls: | |
contrast = gr.Slider( | |
minimum=0.5, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
label="Contrast" | |
) | |
brightness = gr.Slider( | |
minimum=0.5, | |
maximum=1.5, | |
value=1.0, | |
step=0.1, | |
label="Brightness" | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image(type="pil", label="Generated Line Drawing") | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", variant="primary", size="lg") | |
clear_btn = gr.Button("Clear", variant="secondary", size="lg") | |
# Event handlers | |
enable_enhancement.change( | |
fn=lambda x: gr.Group(visible=x), | |
inputs=[enable_enhancement], | |
outputs=[enhancement_controls] | |
) | |
preset_selector.change( | |
fn=apply_preset, | |
inputs=[preset_selector], | |
outputs=[line_thickness, contrast, brightness, enable_enhancement] | |
) | |
generate_btn.click( | |
fn=predict, | |
inputs=[ | |
input_image, | |
version, | |
preset_selector, | |
line_thickness, | |
contrast, | |
brightness, | |
enable_enhancement, | |
output_size | |
], | |
outputs=output_image | |
) | |
clear_btn.click( | |
fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"), | |
inputs=[], | |
outputs=[ | |
input_image, | |
version, | |
preset_selector, | |
line_thickness, | |
contrast, | |
brightness, | |
enable_enhancement, | |
output_size | |
] | |
) | |
# Launch the interface | |
iface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
debug=False | |
) |