Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,148 +5,121 @@ import gradio as gr
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
import os
|
8 |
-
|
|
|
|
|
|
|
9 |
import torch.nn.functional as F
|
10 |
|
11 |
# Force CPU mode for Zero GPU environment
|
12 |
device = torch.device('cpu')
|
13 |
torch.set_num_threads(4) # Optimize CPU performance
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
norm_layer(in_features),
|
24 |
-
nn.ReLU(inplace=True),
|
25 |
-
nn.ReflectionPad2d(1),
|
26 |
-
nn.Conv2d(in_features, in_features, 3),
|
27 |
-
norm_layer(in_features) ]
|
28 |
-
|
29 |
-
self.conv_block = nn.Sequential(*conv_block)
|
30 |
|
31 |
-
def
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
nn.Conv2d(input_nc, 64, 7),
|
41 |
-
norm_layer(64),
|
42 |
-
nn.ReLU(inplace=True) ]
|
43 |
-
self.model0 = nn.Sequential(*model0)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
self.model1 = nn.Sequential(*model1)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
self.model2 = nn.Sequential(*model2)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
out_features = in_features//2
|
66 |
-
for _ in range(2):
|
67 |
-
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
68 |
-
norm_layer(out_features),
|
69 |
-
nn.ReLU(inplace=True) ]
|
70 |
-
in_features = out_features
|
71 |
-
out_features = in_features//2
|
72 |
-
self.model3 = nn.Sequential(*model3)
|
73 |
|
74 |
-
|
75 |
-
model4 = [ nn.ReflectionPad2d(3),
|
76 |
-
nn.Conv2d(64, output_nc, 7)]
|
77 |
-
if sigmoid:
|
78 |
-
model4 += [nn.Sigmoid()]
|
79 |
-
|
80 |
-
self.model4 = nn.Sequential(*model4)
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
# Initialize models
|
96 |
-
model1 = Generator(3, 1, 3)
|
97 |
-
model2 = Generator(3, 1, 3)
|
98 |
-
|
99 |
-
# Load model weights with explicit CPU mapping
|
100 |
-
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
|
101 |
-
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
|
102 |
-
|
103 |
-
# Set to eval mode and optimize for inference
|
104 |
-
model1.eval()
|
105 |
-
model2.eval()
|
106 |
-
|
107 |
-
# Enable inference optimizations
|
108 |
-
torch.set_grad_enabled(False)
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
112 |
except Exception as e:
|
113 |
-
|
114 |
-
print(error_msg)
|
115 |
-
raise gr.Error("Failed to initialize models. Please check the model files and system configuration.")
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
raise gr.Error("Failed to start the application due to model initialization error.")
|
125 |
|
126 |
-
def
|
127 |
-
|
128 |
-
img_array = np.array(img)
|
129 |
-
processed = F.interpolate(
|
130 |
-
torch.from_numpy(img_array).float().unsqueeze(0),
|
131 |
-
size=(256, 256),
|
132 |
-
mode='bilinear',
|
133 |
-
align_corners=False
|
134 |
-
)
|
135 |
-
return processed * strength
|
136 |
-
|
137 |
-
def enhance_lines(img, contrast=1.0, brightness=1.0):
|
138 |
-
"""Enhance line drawing with contrast and brightness adjustments"""
|
139 |
-
enhanced = np.array(img)
|
140 |
-
enhanced = enhanced * contrast
|
141 |
-
enhanced = np.clip(enhanced + brightness, 0, 1)
|
142 |
-
return Image.fromarray((enhanced * 255).astype(np.uint8))
|
143 |
-
|
144 |
-
def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False):
|
145 |
try:
|
|
|
|
|
|
|
|
|
146 |
# Open and process input image
|
147 |
original_img = Image.open(input_img)
|
148 |
original_size = original_img.size
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# Transform pipeline
|
151 |
transform = transforms.Compose([
|
152 |
transforms.Resize(256, Image.BICUBIC),
|
@@ -173,51 +146,97 @@ def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0
|
|
173 |
if enable_enhancement:
|
174 |
output_img = enhance_lines(output_img, contrast, brightness)
|
175 |
|
176 |
-
# Resize to
|
177 |
-
output_img = output_img.resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
return output_img
|
180 |
|
181 |
except Exception as e:
|
182 |
raise gr.Error(f"Error processing image: {str(e)}")
|
183 |
|
184 |
-
#
|
185 |
custom_css = """
|
186 |
.gradio-container {
|
187 |
font-family: 'Helvetica Neue', Arial, sans-serif;
|
|
|
|
|
188 |
}
|
189 |
.gr-button {
|
190 |
border-radius: 8px;
|
191 |
background: linear-gradient(45deg, #3498db, #2980b9);
|
192 |
border: none;
|
193 |
color: white;
|
|
|
194 |
}
|
195 |
.gr-button:hover {
|
196 |
background: linear-gradient(45deg, #2980b9, #3498db);
|
197 |
transform: translateY(-2px);
|
198 |
-
|
|
|
|
|
|
|
199 |
}
|
200 |
.gr-input {
|
201 |
border-radius: 8px;
|
202 |
border: 2px solid #3498db;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
}
|
204 |
"""
|
205 |
|
206 |
# Create Gradio interface with enhanced UI
|
207 |
with gr.Blocks(css=custom_css) as iface:
|
208 |
-
gr.
|
209 |
-
|
|
|
210 |
|
211 |
with gr.Row():
|
212 |
-
with gr.Column():
|
213 |
input_image = gr.Image(type="filepath", label="Upload Image")
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
line_thickness = gr.Slider(
|
222 |
minimum=0.1,
|
223 |
maximum=2.0,
|
@@ -225,10 +244,12 @@ with gr.Blocks(css=custom_css) as iface:
|
|
225 |
step=0.1,
|
226 |
label="Line Thickness"
|
227 |
)
|
|
|
228 |
enable_enhancement = gr.Checkbox(
|
229 |
label="Enable Enhancement",
|
230 |
value=False
|
231 |
)
|
|
|
232 |
with gr.Group(visible=False) as enhancement_controls:
|
233 |
contrast = gr.Slider(
|
234 |
minimum=0.5,
|
@@ -244,66 +265,60 @@ with gr.Blocks(css=custom_css) as iface:
|
|
244 |
step=0.1,
|
245 |
label="Brightness"
|
246 |
)
|
247 |
-
|
248 |
-
|
249 |
-
fn=lambda x: gr.Group(visible=x),
|
250 |
-
inputs=[enable_enhancement],
|
251 |
-
outputs=[enhancement_controls]
|
252 |
-
)
|
253 |
-
|
254 |
-
with gr.Column():
|
255 |
output_image = gr.Image(type="pil", label="Generated Line Drawing")
|
|
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
for file in os.listdir('.'):
|
264 |
-
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
|
265 |
-
example_images.append(file)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
fn=predict,
|
273 |
-
cache_examples=True
|
274 |
-
)
|
275 |
|
276 |
-
# Set up event handlers
|
277 |
generate_btn.click(
|
278 |
fn=predict,
|
279 |
inputs=[
|
280 |
input_image,
|
281 |
version,
|
|
|
282 |
line_thickness,
|
283 |
contrast,
|
284 |
brightness,
|
285 |
-
enable_enhancement
|
|
|
286 |
],
|
287 |
outputs=output_image
|
288 |
)
|
289 |
|
290 |
clear_btn.click(
|
291 |
-
fn=lambda: (None, "Simple Lines", 1.0, 1.0, 1.0, False),
|
292 |
inputs=[],
|
293 |
outputs=[
|
294 |
input_image,
|
295 |
version,
|
|
|
296 |
line_thickness,
|
297 |
contrast,
|
298 |
brightness,
|
299 |
-
enable_enhancement
|
|
|
300 |
]
|
301 |
)
|
302 |
|
303 |
# Launch the interface
|
304 |
iface.launch(
|
305 |
-
server_name="0.0.0.0",
|
306 |
-
server_port=7860,
|
307 |
-
share=False,
|
308 |
-
debug=False
|
309 |
)
|
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
import os
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
import json
|
11 |
+
from datetime import datetime
|
12 |
import torch.nn.functional as F
|
13 |
|
14 |
# Force CPU mode for Zero GPU environment
|
15 |
device = torch.device('cpu')
|
16 |
torch.set_num_threads(4) # Optimize CPU performance
|
17 |
|
18 |
+
# Style presets
|
19 |
+
STYLE_PRESETS = {
|
20 |
+
"Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
|
21 |
+
"Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
|
22 |
+
"Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
|
23 |
+
"High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
|
24 |
+
}
|
25 |
|
26 |
+
# History management
|
27 |
+
class HistoryManager:
|
28 |
+
def __init__(self, max_entries=10):
|
29 |
+
self.max_entries = max_entries
|
30 |
+
self.history_file = "processing_history.json"
|
31 |
+
self.history = self.load_history()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
def load_history(self):
|
34 |
+
try:
|
35 |
+
if os.path.exists(self.history_file):
|
36 |
+
with open(self.history_file, 'r') as f:
|
37 |
+
return json.load(f)
|
38 |
+
return []
|
39 |
+
except Exception:
|
40 |
+
return []
|
41 |
|
42 |
+
def save_history(self):
|
43 |
+
try:
|
44 |
+
with open(self.history_file, 'w') as f:
|
45 |
+
json.dump(self.history[-self.max_entries:], f)
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error saving history: {e}")
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def add_entry(self, input_path, settings):
|
50 |
+
entry = {
|
51 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
52 |
+
"input_file": os.path.basename(input_path),
|
53 |
+
"settings": settings
|
54 |
+
}
|
55 |
+
self.history.append(entry)
|
56 |
+
if len(self.history) > self.max_entries:
|
57 |
+
self.history.pop(0)
|
58 |
+
self.save_history()
|
|
|
59 |
|
60 |
+
def get_latest_settings(self):
|
61 |
+
if self.history:
|
62 |
+
return self.history[-1]["settings"]
|
63 |
+
return None
|
|
|
64 |
|
65 |
+
# Initialize history manager
|
66 |
+
history_manager = HistoryManager()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
[Previous model and generator code remains the same...]
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
def apply_preset(preset_name):
|
71 |
+
"""Apply a style preset and return the settings"""
|
72 |
+
if preset_name in STYLE_PRESETS:
|
73 |
+
return (
|
74 |
+
STYLE_PRESETS[preset_name]["line_thickness"],
|
75 |
+
STYLE_PRESETS[preset_name]["contrast"],
|
76 |
+
STYLE_PRESETS[preset_name]["brightness"],
|
77 |
+
True # Enable enhancement for presets
|
78 |
+
)
|
79 |
+
return (1.0, 1.0, 1.0, False)
|
80 |
|
81 |
+
def save_image_with_metadata(image, output_path, settings):
|
82 |
+
"""Save image with processing metadata"""
|
83 |
try:
|
84 |
+
# Save image
|
85 |
+
image.save(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Save metadata
|
88 |
+
metadata_path = output_path + ".json"
|
89 |
+
with open(metadata_path, 'w') as f:
|
90 |
+
json.dump({
|
91 |
+
"processing_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
92 |
+
"settings": settings
|
93 |
+
}, f)
|
94 |
except Exception as e:
|
95 |
+
print(f"Error saving image metadata: {e}")
|
|
|
|
|
96 |
|
97 |
+
def get_image_download_link(image):
|
98 |
+
"""Create a download link for the processed image"""
|
99 |
+
buffered = io.BytesIO()
|
100 |
+
image.save(buffered, format="PNG")
|
101 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
102 |
+
href = f'data:image/png;base64,{img_str}'
|
103 |
+
return href
|
|
|
104 |
|
105 |
+
def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0,
|
106 |
+
brightness=1.0, enable_enhancement=False, output_size="Original"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
try:
|
108 |
+
# Apply preset if selected
|
109 |
+
if preset_name != "Custom":
|
110 |
+
line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)
|
111 |
+
|
112 |
# Open and process input image
|
113 |
original_img = Image.open(input_img)
|
114 |
original_size = original_img.size
|
115 |
+
|
116 |
+
# Adjust output size
|
117 |
+
if output_size != "Original":
|
118 |
+
width, height = map(int, output_size.split("x"))
|
119 |
+
target_size = (width, height)
|
120 |
+
else:
|
121 |
+
target_size = original_size
|
122 |
+
|
123 |
# Transform pipeline
|
124 |
transform = transforms.Compose([
|
125 |
transforms.Resize(256, Image.BICUBIC),
|
|
|
146 |
if enable_enhancement:
|
147 |
output_img = enhance_lines(output_img, contrast, brightness)
|
148 |
|
149 |
+
# Resize to target size
|
150 |
+
output_img = output_img.resize(target_size, Image.BICUBIC)
|
151 |
+
|
152 |
+
# Save to history
|
153 |
+
settings = {
|
154 |
+
"version": version,
|
155 |
+
"preset": preset_name,
|
156 |
+
"line_thickness": line_thickness,
|
157 |
+
"contrast": contrast,
|
158 |
+
"brightness": brightness,
|
159 |
+
"enable_enhancement": enable_enhancement,
|
160 |
+
"output_size": output_size
|
161 |
+
}
|
162 |
+
history_manager.add_entry(input_img, settings)
|
163 |
|
164 |
return output_img
|
165 |
|
166 |
except Exception as e:
|
167 |
raise gr.Error(f"Error processing image: {str(e)}")
|
168 |
|
169 |
+
# Extended custom CSS
|
170 |
custom_css = """
|
171 |
.gradio-container {
|
172 |
font-family: 'Helvetica Neue', Arial, sans-serif;
|
173 |
+
max-width: 1200px !important;
|
174 |
+
margin: auto;
|
175 |
}
|
176 |
.gr-button {
|
177 |
border-radius: 8px;
|
178 |
background: linear-gradient(45deg, #3498db, #2980b9);
|
179 |
border: none;
|
180 |
color: white;
|
181 |
+
transition: all 0.3s ease;
|
182 |
}
|
183 |
.gr-button:hover {
|
184 |
background: linear-gradient(45deg, #2980b9, #3498db);
|
185 |
transform: translateY(-2px);
|
186 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
|
187 |
+
}
|
188 |
+
.gr-button.secondary {
|
189 |
+
background: linear-gradient(45deg, #95a5a6, #7f8c8d);
|
190 |
}
|
191 |
.gr-input {
|
192 |
border-radius: 8px;
|
193 |
border: 2px solid #3498db;
|
194 |
+
transition: all 0.3s ease;
|
195 |
+
}
|
196 |
+
.gr-input:focus {
|
197 |
+
border-color: #2980b9;
|
198 |
+
box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
|
199 |
+
}
|
200 |
+
.gr-form {
|
201 |
+
border-radius: 12px;
|
202 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
203 |
+
padding: 20px;
|
204 |
+
}
|
205 |
+
.gr-header {
|
206 |
+
text-align: center;
|
207 |
+
margin-bottom: 2em;
|
208 |
}
|
209 |
"""
|
210 |
|
211 |
# Create Gradio interface with enhanced UI
|
212 |
with gr.Blocks(css=custom_css) as iface:
|
213 |
+
with gr.Row(elem_classes="gr-header"):
|
214 |
+
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
|
215 |
+
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
|
216 |
|
217 |
with gr.Row():
|
218 |
+
with gr.Column(scale=1):
|
219 |
input_image = gr.Image(type="filepath", label="Upload Image")
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
version = gr.Radio(
|
223 |
+
choices=['Complex Lines', 'Simple Lines'],
|
224 |
+
value='Simple Lines',
|
225 |
+
label="Drawing Style"
|
226 |
+
)
|
227 |
+
preset_selector = gr.Dropdown(
|
228 |
+
choices=["Custom"] + list(STYLE_PRESETS.keys()),
|
229 |
+
value="Custom",
|
230 |
+
label="Style Preset"
|
231 |
+
)
|
232 |
|
233 |
with gr.Accordion("Advanced Settings", open=False):
|
234 |
+
output_size = gr.Dropdown(
|
235 |
+
choices=["Original", "512x512", "1024x1024", "2048x2048"],
|
236 |
+
value="Original",
|
237 |
+
label="Output Size"
|
238 |
+
)
|
239 |
+
|
240 |
line_thickness = gr.Slider(
|
241 |
minimum=0.1,
|
242 |
maximum=2.0,
|
|
|
244 |
step=0.1,
|
245 |
label="Line Thickness"
|
246 |
)
|
247 |
+
|
248 |
enable_enhancement = gr.Checkbox(
|
249 |
label="Enable Enhancement",
|
250 |
value=False
|
251 |
)
|
252 |
+
|
253 |
with gr.Group(visible=False) as enhancement_controls:
|
254 |
contrast = gr.Slider(
|
255 |
minimum=0.5,
|
|
|
265 |
step=0.1,
|
266 |
label="Brightness"
|
267 |
)
|
268 |
+
|
269 |
+
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
output_image = gr.Image(type="pil", label="Generated Line Drawing")
|
271 |
+
with gr.Row():
|
272 |
+
generate_btn = gr.Button("Generate", variant="primary", size="lg")
|
273 |
+
clear_btn = gr.Button("Clear", variant="secondary", size="lg")
|
274 |
|
275 |
+
# Event handlers
|
276 |
+
enable_enhancement.change(
|
277 |
+
fn=lambda x: gr.Group(visible=x),
|
278 |
+
inputs=[enable_enhancement],
|
279 |
+
outputs=[enhancement_controls]
|
280 |
+
)
|
|
|
|
|
|
|
281 |
|
282 |
+
preset_selector.change(
|
283 |
+
fn=apply_preset,
|
284 |
+
inputs=[preset_selector],
|
285 |
+
outputs=[line_thickness, contrast, brightness, enable_enhancement]
|
286 |
+
)
|
|
|
|
|
|
|
287 |
|
|
|
288 |
generate_btn.click(
|
289 |
fn=predict,
|
290 |
inputs=[
|
291 |
input_image,
|
292 |
version,
|
293 |
+
preset_selector,
|
294 |
line_thickness,
|
295 |
contrast,
|
296 |
brightness,
|
297 |
+
enable_enhancement,
|
298 |
+
output_size
|
299 |
],
|
300 |
outputs=output_image
|
301 |
)
|
302 |
|
303 |
clear_btn.click(
|
304 |
+
fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
|
305 |
inputs=[],
|
306 |
outputs=[
|
307 |
input_image,
|
308 |
version,
|
309 |
+
preset_selector,
|
310 |
line_thickness,
|
311 |
contrast,
|
312 |
brightness,
|
313 |
+
enable_enhancement,
|
314 |
+
output_size
|
315 |
]
|
316 |
)
|
317 |
|
318 |
# Launch the interface
|
319 |
iface.launch(
|
320 |
+
server_name="0.0.0.0",
|
321 |
+
server_port=7860,
|
322 |
+
share=False,
|
323 |
+
debug=False
|
324 |
)
|