File size: 10,095 Bytes
3b6ad82
 
 
 
 
 
2cdbfb7
9c857dc
 
 
 
2cdbfb7
 
8a9898f
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
3b6ad82
9c857dc
 
3b6ad82
9c857dc
3b6ad82
9c857dc
 
 
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
dc5358b
9c857dc
 
8a9898f
9c857dc
 
 
 
 
 
 
dc5358b
9c857dc
2cdbfb7
9c857dc
 
 
 
 
 
 
2cdbfb7
9c857dc
 
2cdbfb7
9c857dc
 
 
 
2cdbfb7
 
 
9c857dc
 
 
 
 
 
 
 
2cdbfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c857dc
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
 
 
 
 
9c857dc
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
 
 
 
2cdbfb7
 
 
 
9c857dc
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
 
 
 
9c857dc
 
 
2cdbfb7
 
9c857dc
2cdbfb7
9c857dc
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
9c857dc
 
 
 
 
 
2cdbfb7
 
 
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
2cdbfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c857dc
 
2cdbfb7
9c857dc
 
 
2cdbfb7
9c857dc
 
 
 
 
 
2cdbfb7
9c857dc
 
 
 
 
2cdbfb7
 
 
 
 
 
9c857dc
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
3b6ad82
2cdbfb7
8a9898f
9c857dc
 
 
 
8a9898f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
import io
import base64
import json
from datetime import datetime
import torch.nn.functional as F

# Force CPU mode for Zero GPU environment
device = torch.device('cpu')
torch.set_num_threads(4)  # Optimize CPU performance

# Style presets
STYLE_PRESETS = {
    "Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
    "Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
    "Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
    "High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
}

# History management
class HistoryManager:
    def __init__(self, max_entries=10):
        self.max_entries = max_entries
        self.history_file = "processing_history.json"
        self.history = self.load_history()

    def load_history(self):
        try:
            if os.path.exists(self.history_file):
                with open(self.history_file, 'r') as f:
                    return json.load(f)
            return []
        except Exception:
            return []

    def save_history(self):
        try:
            with open(self.history_file, 'w') as f:
                json.dump(self.history[-self.max_entries:], f)
        except Exception as e:
            print(f"Error saving history: {e}")

    def add_entry(self, input_path, settings):
        entry = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "input_file": os.path.basename(input_path),
            "settings": settings
        }
        self.history.append(entry)
        if len(self.history) > self.max_entries:
            self.history.pop(0)
        self.save_history()

    def get_latest_settings(self):
        if self.history:
            return self.history[-1]["settings"]
        return None

# Initialize history manager
history_manager = HistoryManager()

[Previous model and generator code remains the same...]

def apply_preset(preset_name):
    """Apply a style preset and return the settings"""
    if preset_name in STYLE_PRESETS:
        return (
            STYLE_PRESETS[preset_name]["line_thickness"],
            STYLE_PRESETS[preset_name]["contrast"],
            STYLE_PRESETS[preset_name]["brightness"],
            True  # Enable enhancement for presets
        )
    return (1.0, 1.0, 1.0, False)

def save_image_with_metadata(image, output_path, settings):
    """Save image with processing metadata"""
    try:
        # Save image
        image.save(output_path)
        
        # Save metadata
        metadata_path = output_path + ".json"
        with open(metadata_path, 'w') as f:
            json.dump({
                "processing_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                "settings": settings
            }, f)
    except Exception as e:
        print(f"Error saving image metadata: {e}")

def get_image_download_link(image):
    """Create a download link for the processed image"""
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    href = f'data:image/png;base64,{img_str}'
    return href

def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0, 
           brightness=1.0, enable_enhancement=False, output_size="Original"):
    try:
        # Apply preset if selected
        if preset_name != "Custom":
            line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)

        # Open and process input image
        original_img = Image.open(input_img)
        original_size = original_img.size

        # Adjust output size
        if output_size != "Original":
            width, height = map(int, output_size.split("x"))
            target_size = (width, height)
        else:
            target_size = original_size

        # Transform pipeline
        transform = transforms.Compose([
            transforms.Resize(256, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        
        input_tensor = transform(original_img).unsqueeze(0).to(device)
        
        # Process through selected model
        with torch.no_grad():
            if version == 'Simple Lines':
                output = model2(input_tensor)
            else:
                output = model1(input_tensor)
            
            # Apply line thickness adjustment
            output = output * line_thickness
        
        # Convert to image
        output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
        
        # Apply enhancements if enabled
        if enable_enhancement:
            output_img = enhance_lines(output_img, contrast, brightness)
        
        # Resize to target size
        output_img = output_img.resize(target_size, Image.BICUBIC)
        
        # Save to history
        settings = {
            "version": version,
            "preset": preset_name,
            "line_thickness": line_thickness,
            "contrast": contrast,
            "brightness": brightness,
            "enable_enhancement": enable_enhancement,
            "output_size": output_size
        }
        history_manager.add_entry(input_img, settings)
        
        return output_img
        
    except Exception as e:
        raise gr.Error(f"Error processing image: {str(e)}")

# Extended custom CSS
custom_css = """
.gradio-container {
    font-family: 'Helvetica Neue', Arial, sans-serif;
    max-width: 1200px !important;
    margin: auto;
}
.gr-button {
    border-radius: 8px;
    background: linear-gradient(45deg, #3498db, #2980b9);
    border: none;
    color: white;
    transition: all 0.3s ease;
}
.gr-button:hover {
    background: linear-gradient(45deg, #2980b9, #3498db);
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
.gr-button.secondary {
    background: linear-gradient(45deg, #95a5a6, #7f8c8d);
}
.gr-input {
    border-radius: 8px;
    border: 2px solid #3498db;
    transition: all 0.3s ease;
}
.gr-input:focus {
    border-color: #2980b9;
    box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
}
.gr-form {
    border-radius: 12px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.1);
    padding: 20px;
}
.gr-header {
    text-align: center;
    margin-bottom: 2em;
}
"""

# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
    with gr.Row(elem_classes="gr-header"):
        gr.Markdown("# 🎨 Advanced Line Drawing Generator")
        gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="filepath", label="Upload Image")
            
            with gr.Row():
                version = gr.Radio(
                    choices=['Complex Lines', 'Simple Lines'],
                    value='Simple Lines',
                    label="Drawing Style"
                )
                preset_selector = gr.Dropdown(
                    choices=["Custom"] + list(STYLE_PRESETS.keys()),
                    value="Custom",
                    label="Style Preset"
                )
            
            with gr.Accordion("Advanced Settings", open=False):
                output_size = gr.Dropdown(
                    choices=["Original", "512x512", "1024x1024", "2048x2048"],
                    value="Original",
                    label="Output Size"
                )
                
                line_thickness = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Line Thickness"
                )
                
                enable_enhancement = gr.Checkbox(
                    label="Enable Enhancement",
                    value=False
                )
                
                with gr.Group(visible=False) as enhancement_controls:
                    contrast = gr.Slider(
                        minimum=0.5,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        label="Contrast"
                    )
                    brightness = gr.Slider(
                        minimum=0.5,
                        maximum=1.5,
                        value=1.0,
                        step=0.1,
                        label="Brightness"
                    )
        
        with gr.Column(scale=1):
            output_image = gr.Image(type="pil", label="Generated Line Drawing")
            with gr.Row():
                generate_btn = gr.Button("Generate", variant="primary", size="lg")
                clear_btn = gr.Button("Clear", variant="secondary", size="lg")
    
    # Event handlers
    enable_enhancement.change(
        fn=lambda x: gr.Group(visible=x),
        inputs=[enable_enhancement],
        outputs=[enhancement_controls]
    )
    
    preset_selector.change(
        fn=apply_preset,
        inputs=[preset_selector],
        outputs=[line_thickness, contrast, brightness, enable_enhancement]
    )
    
    generate_btn.click(
        fn=predict,
        inputs=[
            input_image,
            version,
            preset_selector,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement,
            output_size
        ],
        outputs=output_image
    )
    
    clear_btn.click(
        fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
        inputs=[],
        outputs=[
            input_image,
            version,
            preset_selector,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement,
            output_size
        ]
    )

# Launch the interface
iface.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=False,
    debug=False
)