Spaces:
Running
Running
File size: 10,095 Bytes
3b6ad82 2cdbfb7 9c857dc 2cdbfb7 8a9898f 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc 3b6ad82 9c857dc dc5358b 9c857dc 8a9898f 9c857dc dc5358b 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 9c857dc 2cdbfb7 3b6ad82 2cdbfb7 8a9898f 9c857dc 8a9898f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
import io
import base64
import json
from datetime import datetime
import torch.nn.functional as F
# Force CPU mode for Zero GPU environment
device = torch.device('cpu')
torch.set_num_threads(4) # Optimize CPU performance
# Style presets
STYLE_PRESETS = {
"Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
"Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
"Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
"High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
}
# History management
class HistoryManager:
def __init__(self, max_entries=10):
self.max_entries = max_entries
self.history_file = "processing_history.json"
self.history = self.load_history()
def load_history(self):
try:
if os.path.exists(self.history_file):
with open(self.history_file, 'r') as f:
return json.load(f)
return []
except Exception:
return []
def save_history(self):
try:
with open(self.history_file, 'w') as f:
json.dump(self.history[-self.max_entries:], f)
except Exception as e:
print(f"Error saving history: {e}")
def add_entry(self, input_path, settings):
entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"input_file": os.path.basename(input_path),
"settings": settings
}
self.history.append(entry)
if len(self.history) > self.max_entries:
self.history.pop(0)
self.save_history()
def get_latest_settings(self):
if self.history:
return self.history[-1]["settings"]
return None
# Initialize history manager
history_manager = HistoryManager()
[Previous model and generator code remains the same...]
def apply_preset(preset_name):
"""Apply a style preset and return the settings"""
if preset_name in STYLE_PRESETS:
return (
STYLE_PRESETS[preset_name]["line_thickness"],
STYLE_PRESETS[preset_name]["contrast"],
STYLE_PRESETS[preset_name]["brightness"],
True # Enable enhancement for presets
)
return (1.0, 1.0, 1.0, False)
def save_image_with_metadata(image, output_path, settings):
"""Save image with processing metadata"""
try:
# Save image
image.save(output_path)
# Save metadata
metadata_path = output_path + ".json"
with open(metadata_path, 'w') as f:
json.dump({
"processing_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"settings": settings
}, f)
except Exception as e:
print(f"Error saving image metadata: {e}")
def get_image_download_link(image):
"""Create a download link for the processed image"""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
href = f'data:image/png;base64,{img_str}'
return href
def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0,
brightness=1.0, enable_enhancement=False, output_size="Original"):
try:
# Apply preset if selected
if preset_name != "Custom":
line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)
# Open and process input image
original_img = Image.open(input_img)
original_size = original_img.size
# Adjust output size
if output_size != "Original":
width, height = map(int, output_size.split("x"))
target_size = (width, height)
else:
target_size = original_size
# Transform pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0).to(device)
# Process through selected model
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Apply line thickness adjustment
output = output * line_thickness
# Convert to image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Apply enhancements if enabled
if enable_enhancement:
output_img = enhance_lines(output_img, contrast, brightness)
# Resize to target size
output_img = output_img.resize(target_size, Image.BICUBIC)
# Save to history
settings = {
"version": version,
"preset": preset_name,
"line_thickness": line_thickness,
"contrast": contrast,
"brightness": brightness,
"enable_enhancement": enable_enhancement,
"output_size": output_size
}
history_manager.add_entry(input_img, settings)
return output_img
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Extended custom CSS
custom_css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
max-width: 1200px !important;
margin: auto;
}
.gr-button {
border-radius: 8px;
background: linear-gradient(45deg, #3498db, #2980b9);
border: none;
color: white;
transition: all 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(45deg, #2980b9, #3498db);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
.gr-button.secondary {
background: linear-gradient(45deg, #95a5a6, #7f8c8d);
}
.gr-input {
border-radius: 8px;
border: 2px solid #3498db;
transition: all 0.3s ease;
}
.gr-input:focus {
border-color: #2980b9;
box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
}
.gr-form {
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
padding: 20px;
}
.gr-header {
text-align: center;
margin-bottom: 2em;
}
"""
# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
with gr.Row(elem_classes="gr-header"):
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Upload Image")
with gr.Row():
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Drawing Style"
)
preset_selector = gr.Dropdown(
choices=["Custom"] + list(STYLE_PRESETS.keys()),
value="Custom",
label="Style Preset"
)
with gr.Accordion("Advanced Settings", open=False):
output_size = gr.Dropdown(
choices=["Original", "512x512", "1024x1024", "2048x2048"],
value="Original",
label="Output Size"
)
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
enable_enhancement = gr.Checkbox(
label="Enable Enhancement",
value=False
)
with gr.Group(visible=False) as enhancement_controls:
contrast = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Contrast"
)
brightness = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.1,
label="Brightness"
)
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Generated Line Drawing")
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary", size="lg")
# Event handlers
enable_enhancement.change(
fn=lambda x: gr.Group(visible=x),
inputs=[enable_enhancement],
outputs=[enhancement_controls]
)
preset_selector.change(
fn=apply_preset,
inputs=[preset_selector],
outputs=[line_thickness, contrast, brightness, enable_enhancement]
)
generate_btn.click(
fn=predict,
inputs=[
input_image,
version,
preset_selector,
line_thickness,
contrast,
brightness,
enable_enhancement,
output_size
],
outputs=output_image
)
clear_btn.click(
fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
inputs=[],
outputs=[
input_image,
version,
preset_selector,
line_thickness,
contrast,
brightness,
enable_enhancement,
output_size
]
)
# Launch the interface
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False
) |