ModelVerse / app.py
evijit's picture
evijit HF Staff
Update app.py
59d14c6 verified
raw
history blame
12.2 kB
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# --- FIX 1: Import the new, stable RangeSlider component ---
from gradio_rangeslider import RangeSlider
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
# The new component uses a tuple for its default value
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
df['params'] = 0
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
# --- FIX 2: Replace all previous slider attempts with the stable custom component ---
param_range_slider = RangeSlider(
minimum=0,
maximum=len(PARAM_CHOICES) - 1,
value=PARAM_CHOICES_DEFAULT_INDICES,
step=1,
label="Parameters"
)
# This markdown will display the selected range labels
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# Event handler to update the text display when the slider changes
def update_param_display(value: tuple):
min_idx, max_idx = int(value[0]), int(value[1])
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
status_msg_ui = "Data loaded. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
load_success_flag = False
print(f"Critical error in ui_load_data_controller: {e}")
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
progress(0.1, desc="Preparing data...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_items_in_plot = len(treemap_df['id'].unique())
# --- FIX 3: Corrected the NameError from the traceback ---
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
# A standard load event, no JS needed anymore.
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch()