Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,22 @@
|
|
1 |
-
# --- START OF FIXED FILE app.py ---
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
import time
|
7 |
-
import json
|
8 |
from datasets import load_dataset
|
|
|
|
|
9 |
|
10 |
# --- Constants ---
|
11 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
12 |
-
|
|
|
13 |
|
14 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
15 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
16 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
17 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
18 |
|
|
|
19 |
def load_models_data():
|
20 |
overall_start_time = time.time()
|
21 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
@@ -75,226 +76,49 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
75 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
76 |
return fig
|
77 |
|
78 |
-
|
79 |
-
custom_head = """
|
80 |
-
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.css">
|
81 |
-
<script src="https://cdnjs.cloudflare.com/ajax/libs/noUiSlider/15.7.1/nouislider.min.js"></script>
|
82 |
-
"""
|
83 |
-
|
84 |
-
# JavaScript for creating the slider - this will be injected properly
|
85 |
-
def create_slider_js():
|
86 |
-
return f"""
|
87 |
-
function initializeSlider() {{
|
88 |
-
const paramChoices = {json.dumps(PARAM_CHOICES)};
|
89 |
-
const sliderContainer = document.getElementById('param-slider');
|
90 |
-
const hiddenInput = document.querySelector('#param-range-hidden input');
|
91 |
-
|
92 |
-
if (!sliderContainer || !hiddenInput) {{
|
93 |
-
console.log('Slider elements not found, retrying...');
|
94 |
-
setTimeout(initializeSlider, 100);
|
95 |
-
return;
|
96 |
-
}}
|
97 |
-
|
98 |
-
// Clear any existing slider
|
99 |
-
if (sliderContainer.noUiSlider) {{
|
100 |
-
sliderContainer.noUiSlider.destroy();
|
101 |
-
}}
|
102 |
-
|
103 |
-
// Create the slider
|
104 |
-
noUiSlider.create(sliderContainer, {{
|
105 |
-
start: [0, paramChoices.length - 1],
|
106 |
-
connect: true,
|
107 |
-
step: 1,
|
108 |
-
range: {{
|
109 |
-
'min': 0,
|
110 |
-
'max': paramChoices.length - 1
|
111 |
-
}},
|
112 |
-
pips: {{
|
113 |
-
mode: 'values',
|
114 |
-
values: Array.from({{length: paramChoices.length}}, (_, i) => i),
|
115 |
-
density: 100 / (paramChoices.length - 1),
|
116 |
-
format: {{
|
117 |
-
to: function(value) {{
|
118 |
-
return paramChoices[Math.round(value)];
|
119 |
-
}}
|
120 |
-
}}
|
121 |
-
}}
|
122 |
-
}});
|
123 |
-
|
124 |
-
// Update hidden input when slider changes
|
125 |
-
sliderContainer.noUiSlider.on('update', function(values) {{
|
126 |
-
const indices = values.map(v => Math.round(parseFloat(v)));
|
127 |
-
hiddenInput.value = JSON.stringify(indices);
|
128 |
-
hiddenInput.dispatchEvent(new Event('input', {{ bubbles: true }}));
|
129 |
-
|
130 |
-
// Highlight selected range
|
131 |
-
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
|
132 |
-
const isSelected = index >= indices[0] && index <= indices[1];
|
133 |
-
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
|
134 |
-
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
|
135 |
-
}});
|
136 |
-
}});
|
137 |
-
|
138 |
-
// Initial highlight
|
139 |
-
document.querySelectorAll('.noUi-value').forEach((pip, index) => {{
|
140 |
-
const isSelected = index >= 0 && index <= paramChoices.length - 1;
|
141 |
-
pip.style.fontWeight = isSelected ? 'bold' : 'normal';
|
142 |
-
pip.style.color = isSelected ? '#2563eb' : '#6b7280';
|
143 |
-
}});
|
144 |
-
|
145 |
-
console.log('Slider initialized successfully');
|
146 |
-
}}
|
147 |
-
|
148 |
-
// Initialize when DOM is ready
|
149 |
-
if (document.readyState === 'loading') {{
|
150 |
-
document.addEventListener('DOMContentLoaded', initializeSlider);
|
151 |
-
}} else {{
|
152 |
-
initializeSlider();
|
153 |
-
}}
|
154 |
-
"""
|
155 |
-
|
156 |
-
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_head) as demo:
|
157 |
models_data_state = gr.State(pd.DataFrame())
|
158 |
loading_complete_state = gr.State(False)
|
159 |
|
160 |
with gr.Row():
|
161 |
with gr.Column(scale=1):
|
162 |
-
count_by_dropdown = gr.Dropdown(
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
)
|
167 |
-
|
168 |
-
filter_choice_radio = gr.Radio(
|
169 |
-
label="Filter Type",
|
170 |
-
choices=["None", "Tag Filter", "Pipeline Filter"],
|
171 |
-
value="None"
|
172 |
-
)
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
pipeline_filter_dropdown = gr.Dropdown(
|
182 |
-
label="Select Pipeline Tag",
|
183 |
-
choices=PIPELINE_TAGS,
|
184 |
-
value=None,
|
185 |
-
visible=False
|
186 |
-
)
|
187 |
-
|
188 |
-
# Parameter range slider section
|
189 |
-
with gr.Group():
|
190 |
-
gr.Markdown("### Parameters")
|
191 |
-
|
192 |
-
# Custom HTML for the slider
|
193 |
-
gr.HTML(f"""
|
194 |
-
<div id="param-slider" style="margin: 20px 10px 60px 10px; height: 20px;"></div>
|
195 |
-
<style>
|
196 |
-
#param-slider {{
|
197 |
-
height: 20px;
|
198 |
-
}}
|
199 |
-
.noUi-target {{
|
200 |
-
background: #f1f5f9;
|
201 |
-
border-radius: 10px;
|
202 |
-
border: 1px solid #e2e8f0;
|
203 |
-
box-shadow: none;
|
204 |
-
}}
|
205 |
-
.noUi-connect {{
|
206 |
-
background: #3b82f6;
|
207 |
-
border-radius: 10px;
|
208 |
-
}}
|
209 |
-
.noUi-handle {{
|
210 |
-
width: 20px;
|
211 |
-
height: 20px;
|
212 |
-
right: -10px;
|
213 |
-
top: -5px;
|
214 |
-
background: white;
|
215 |
-
border: 2px solid #3b82f6;
|
216 |
-
border-radius: 50%;
|
217 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
218 |
-
cursor: pointer;
|
219 |
-
}}
|
220 |
-
.noUi-handle:before,
|
221 |
-
.noUi-handle:after {{
|
222 |
-
display: none;
|
223 |
-
}}
|
224 |
-
.noUi-handle:focus {{
|
225 |
-
outline: none;
|
226 |
-
}}
|
227 |
-
.noUi-pips {{
|
228 |
-
color: #6b7280;
|
229 |
-
font-size: 12px;
|
230 |
-
}}
|
231 |
-
.noUi-pips-horizontal {{
|
232 |
-
padding: 10px 0;
|
233 |
-
height: 60px;
|
234 |
-
}}
|
235 |
-
.noUi-value {{
|
236 |
-
font-size: 11px;
|
237 |
-
padding-top: 5px;
|
238 |
-
cursor: pointer;
|
239 |
-
}}
|
240 |
-
.noUi-marker-horizontal.noUi-marker {{
|
241 |
-
background: #e2e8f0;
|
242 |
-
height: 5px;
|
243 |
-
width: 1px;
|
244 |
-
}}
|
245 |
-
</style>
|
246 |
-
""")
|
247 |
-
|
248 |
-
# Hidden input to store slider values
|
249 |
-
param_range_hidden = gr.Textbox(
|
250 |
-
value=PARAM_CHOICES_DEFAULT_INDICES_JSON,
|
251 |
-
visible=False,
|
252 |
-
elem_id="param-range-hidden"
|
253 |
-
)
|
254 |
-
|
255 |
-
top_k_dropdown = gr.Dropdown(
|
256 |
-
label="Number of Top Organizations",
|
257 |
-
choices=TOP_K_CHOICES,
|
258 |
-
value=25
|
259 |
-
)
|
260 |
-
|
261 |
-
skip_orgs_textbox = gr.Textbox(
|
262 |
-
label="Organizations to Skip (comma-separated)",
|
263 |
-
value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
|
264 |
-
)
|
265 |
-
|
266 |
-
generate_plot_button = gr.Button(
|
267 |
-
value="Generate Plot",
|
268 |
-
variant="primary",
|
269 |
-
interactive=False
|
270 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
with gr.Column(scale=3):
|
273 |
plot_output = gr.Plot()
|
274 |
status_message_md = gr.Markdown("Initializing...")
|
275 |
data_info_md = gr.Markdown("")
|
276 |
-
|
277 |
-
# Event handlers
|
278 |
-
def _update_button_interactivity(is_loaded_flag):
|
279 |
-
return gr.update(interactive=is_loaded_flag)
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
)
|
286 |
-
|
287 |
-
def _toggle_filters_visibility(choice):
|
288 |
-
return (
|
289 |
-
gr.update(visible=choice == "Tag Filter"),
|
290 |
-
gr.update(visible=choice == "Pipeline Filter")
|
291 |
-
)
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
298 |
|
299 |
def ui_load_data_controller(progress=gr.Progress()):
|
300 |
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
|
@@ -320,7 +144,7 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_he
|
|
320 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
321 |
|
322 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
323 |
-
|
324 |
if df_current_models is None or df_current_models.empty:
|
325 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
326 |
|
@@ -329,11 +153,6 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_he
|
|
329 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
330 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
331 |
|
332 |
-
try:
|
333 |
-
param_range_indices = json.loads(param_range_json)
|
334 |
-
except:
|
335 |
-
param_range_indices = [0, len(PARAM_CHOICES) - 1]
|
336 |
-
|
337 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
338 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
339 |
param_labels_for_filtering = [min_label, max_label]
|
@@ -349,35 +168,25 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, head=custom_he
|
|
349 |
plot_stats_md = "No data matches the selected filters. Please try different options."
|
350 |
else:
|
351 |
total_items_in_plot = len(treemap_df['id'].unique())
|
|
|
352 |
total_value_in_plot = treemap_df[metric_choice].sum()
|
353 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
354 |
return plotly_fig, plot_stats_md
|
355 |
|
356 |
-
#
|
357 |
demo.load(
|
358 |
fn=ui_load_data_controller,
|
359 |
inputs=[],
|
360 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
361 |
)
|
362 |
-
|
363 |
-
# Initialize slider after page loads
|
364 |
-
demo.load(
|
365 |
-
fn=lambda: None,
|
366 |
-
inputs=[],
|
367 |
-
outputs=[],
|
368 |
-
js=create_slider_js()
|
369 |
-
)
|
370 |
|
371 |
-
# Generate plot button click handler
|
372 |
generate_plot_button.click(
|
373 |
fn=ui_generate_plot_controller,
|
374 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
375 |
-
|
376 |
outputs=[plot_output, status_message_md]
|
377 |
)
|
378 |
|
379 |
if __name__ == "__main__":
|
380 |
print(f"Application starting...")
|
381 |
-
demo.queue().launch()
|
382 |
-
|
383 |
-
# --- END OF FIXED FILE
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
import time
|
|
|
5 |
from datasets import load_dataset
|
6 |
+
# --- FIX 1: Import the new, stable RangeSlider component ---
|
7 |
+
from gradio_rangeslider import RangeSlider
|
8 |
|
9 |
# --- Constants ---
|
10 |
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
11 |
+
# The new component uses a tuple for its default value
|
12 |
+
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)
|
13 |
|
14 |
TOP_K_CHOICES = list(range(5, 51, 5))
|
15 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
16 |
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
|
17 |
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
|
18 |
|
19 |
+
|
20 |
def load_models_data():
|
21 |
overall_start_time = time.time()
|
22 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
|
|
76 |
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
|
77 |
return fig
|
78 |
|
79 |
+
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
models_data_state = gr.State(pd.DataFrame())
|
81 |
loading_complete_state = gr.State(False)
|
82 |
|
83 |
with gr.Row():
|
84 |
with gr.Column(scale=1):
|
85 |
+
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
|
86 |
+
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
|
87 |
+
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
|
88 |
+
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# --- FIX 2: Replace all previous slider attempts with the stable custom component ---
|
91 |
+
param_range_slider = RangeSlider(
|
92 |
+
minimum=0,
|
93 |
+
maximum=len(PARAM_CHOICES) - 1,
|
94 |
+
value=PARAM_CHOICES_DEFAULT_INDICES,
|
95 |
+
step=1,
|
96 |
+
label="Parameters"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
+
# This markdown will display the selected range labels
|
99 |
+
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
|
100 |
+
|
101 |
+
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
102 |
+
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
103 |
+
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
104 |
|
105 |
with gr.Column(scale=3):
|
106 |
plot_output = gr.Plot()
|
107 |
status_message_md = gr.Markdown("Initializing...")
|
108 |
data_info_md = gr.Markdown("")
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Event handler to update the text display when the slider changes
|
111 |
+
def update_param_display(value: tuple):
|
112 |
+
min_idx, max_idx = int(value[0]), int(value[1])
|
113 |
+
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
|
116 |
+
|
117 |
+
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
|
118 |
+
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
119 |
+
|
120 |
+
def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
|
121 |
+
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
|
122 |
|
123 |
def ui_load_data_controller(progress=gr.Progress()):
|
124 |
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
|
|
|
144 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
145 |
|
146 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
147 |
+
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
148 |
if df_current_models is None or df_current_models.empty:
|
149 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
150 |
|
|
|
153 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
154 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
|
155 |
|
|
|
|
|
|
|
|
|
|
|
156 |
min_label = PARAM_CHOICES[int(param_range_indices[0])]
|
157 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
158 |
param_labels_for_filtering = [min_label, max_label]
|
|
|
168 |
plot_stats_md = "No data matches the selected filters. Please try different options."
|
169 |
else:
|
170 |
total_items_in_plot = len(treemap_df['id'].unique())
|
171 |
+
# --- FIX 3: Corrected the NameError from the traceback ---
|
172 |
total_value_in_plot = treemap_df[metric_choice].sum()
|
173 |
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
|
174 |
return plotly_fig, plot_stats_md
|
175 |
|
176 |
+
# A standard load event, no JS needed anymore.
|
177 |
demo.load(
|
178 |
fn=ui_load_data_controller,
|
179 |
inputs=[],
|
180 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
181 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
|
|
183 |
generate_plot_button.click(
|
184 |
fn=ui_generate_plot_controller,
|
185 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
186 |
+
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
|
187 |
outputs=[plot_output, status_message_md]
|
188 |
)
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
print(f"Application starting...")
|
192 |
+
demo.queue().launch()
|
|
|
|