Spaces:
Running
Running
File size: 12,177 Bytes
bbf45d0 961c6fe b06975a 59d14c6 961c6fe 97da54a 59d14c6 afd7356 b06975a afd7356 4517d15 961c6fe 59d14c6 afd7356 961c6fe afd7356 d858aa5 97da54a f0e2fd8 97da54a d858aa5 afd7356 d858aa5 afd7356 961c6fe 97da54a 961c6fe 97da54a 961c6fe 9c451ee 4517d15 b06975a 97da54a 4517d15 97da54a 4517d15 b06975a 961c6fe b06975a 0c6bf95 f0e2fd8 961c6fe f0e2fd8 9c451ee f0e2fd8 961c6fe 9c451ee 4517d15 961c6fe bbf45d0 59d14c6 961c6fe f0e2fd8 d858aa5 98b7de8 f0e2fd8 59d14c6 47e0cf9 59d14c6 47e0cf9 59d14c6 afd7356 f0e2fd8 961c6fe f0e2fd8 47e0cf9 59d14c6 47e0cf9 59d14c6 961c6fe afd7356 b06975a 961c6fe afd7356 961c6fe b06975a fa2c2d2 b06975a fa2c2d2 97da54a 4517d15 b06975a 4517d15 961c6fe 4517d15 961c6fe d858aa5 961c6fe b06975a f0e2fd8 961c6fe 4d0811f 961c6fe 59d14c6 961c6fe b06975a d858aa5 b06975a 961c6fe b06975a f0e2fd8 4517d15 9c451ee b06975a 961c6fe afd7356 961c6fe b06975a 961c6fe f0e2fd8 59d14c6 d858aa5 4517d15 961c6fe 59d14c6 0c6bf95 47e0cf9 afd7356 bbf45d0 961c6fe 59d14c6 f0e2fd8 bbf45d0 d858aa5 59d14c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# --- FIX 1: Import the new, stable RangeSlider component ---
from gradio_rangeslider import RangeSlider
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
# The new component uses a tuple for its default value
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/orgstats_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
else:
df['params'] = 0
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
# --- FIX 2: Replace all previous slider attempts with the stable custom component ---
param_range_slider = RangeSlider(
minimum=0,
maximum=len(PARAM_CHOICES) - 1,
value=PARAM_CHOICES_DEFAULT_INDICES,
step=1,
label="Parameters"
)
# This markdown will display the selected range labels
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
# Event handler to update the text display when the slider changes
def update_param_display(value: tuple):
min_idx, max_idx = int(value[0]), int(value[1])
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice): return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.9, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
status_msg_ui = "Data loaded. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
load_success_flag = False
print(f"Critical error in ui_load_data_controller: {e}")
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
progress(0.1, desc="Preparing data...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_items_in_plot = len(treemap_df['id'].unique())
# --- FIX 3: Corrected the NameError from the traceback ---
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
# A standard load event, no JS needed anymore.
demo.load(
fn=ui_load_data_controller,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch() |