Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# --- START OF FILE app.py ---
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
@@ -7,10 +7,10 @@ import time
|
|
7 |
from datasets import load_dataset # Import the datasets library
|
8 |
|
9 |
# --- Constants ---
|
10 |
-
MODEL_SIZE_RANGES
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
# The Hugging Face dataset ID to load.
|
16 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
@@ -42,44 +42,40 @@ def load_models_data():
|
|
42 |
overall_start_time = time.time()
|
43 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
44 |
|
45 |
-
# These are the columns expected to be in the pre-processed dataset.
|
46 |
expected_cols = [
|
47 |
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
|
48 |
-
'
|
49 |
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
|
50 |
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
|
51 |
'data_download_timestamp'
|
52 |
]
|
53 |
|
54 |
try:
|
55 |
-
# Load the dataset using the datasets library
|
56 |
-
# It will be cached locally after the first run.
|
57 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
58 |
|
59 |
if not dataset_dict:
|
60 |
raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
|
61 |
|
62 |
-
# Get the name of the first split (e.g., 'train')
|
63 |
split_name = list(dataset_dict.keys())[0]
|
64 |
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
|
65 |
-
|
66 |
-
# Convert the dataset object to a Pandas DataFrame
|
67 |
df = dataset_dict[split_name].to_pandas()
|
68 |
-
|
69 |
elapsed = time.time() - overall_start_time
|
70 |
|
71 |
-
# Validate that the loaded data has the columns we expect.
|
72 |
missing_cols = [col for col in expected_cols if col not in df.columns]
|
73 |
if missing_cols:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
else:
|
81 |
-
|
82 |
-
|
|
|
83 |
|
84 |
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
|
85 |
print(msg)
|
@@ -90,8 +86,24 @@ def load_models_data():
|
|
90 |
print(err_msg)
|
91 |
return pd.DataFrame(), False, err_msg
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
95 |
if df is None or df.empty: return pd.DataFrame()
|
96 |
filtered_df = df.copy()
|
97 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
|
@@ -107,16 +119,26 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
|
|
107 |
|
108 |
if pipeline_filter:
|
109 |
if "pipeline_tag" in filtered_df.columns:
|
110 |
-
# Ensure the comparison works even if pipeline_tag has NaNs or mixed types
|
111 |
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
|
112 |
else:
|
113 |
print(f"Warning: 'pipeline_tag' column not found for filtering.")
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if skip_orgs and len(skip_orgs) > 0:
|
122 |
if "organization" in filtered_df.columns:
|
@@ -126,20 +148,16 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
|
|
126 |
|
127 |
if filtered_df.empty: return pd.DataFrame()
|
128 |
|
129 |
-
# Ensure the metric column is numeric and handle potential missing values
|
130 |
if count_by not in filtered_df.columns:
|
131 |
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
|
132 |
filtered_df[count_by] = 0.0
|
133 |
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
|
134 |
|
135 |
-
# Group and get top organizations
|
136 |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
|
137 |
top_orgs_list = org_totals.index.tolist()
|
138 |
|
139 |
-
# Prepare data for treemap
|
140 |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
|
141 |
treemap_data["root"] = "models"
|
142 |
-
# Ensure numeric again for the final slice
|
143 |
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
|
144 |
return treemap_data
|
145 |
|
@@ -168,7 +186,19 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
168 |
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
|
169 |
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
|
170 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
|
173 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
174 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
@@ -178,6 +208,20 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
178 |
status_message_md = gr.Markdown("Initializing...")
|
179 |
data_info_md = gr.Markdown("")
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
def _update_button_interactivity(is_loaded_flag):
|
182 |
return gr.update(interactive=is_loaded_flag)
|
183 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
@@ -193,37 +237,24 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
193 |
data_info_text = ""
|
194 |
current_df = pd.DataFrame()
|
195 |
load_success_flag = False
|
196 |
-
data_as_of_date_display = "N/A"
|
197 |
try:
|
198 |
-
# Call the load function that uses the datasets library.
|
199 |
current_df, load_success_flag, status_msg_from_load = load_models_data()
|
200 |
if load_success_flag:
|
201 |
progress(0.9, desc="Processing loaded data...")
|
202 |
-
# Get the data timestamp from the loaded file
|
203 |
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
204 |
-
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
|
205 |
-
# Ensure the timestamp is timezone-aware for consistent formatting
|
206 |
-
if timestamp_from_parquet.tzinfo is None:
|
207 |
-
timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
|
208 |
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
|
209 |
else:
|
210 |
data_as_of_date_display = "Pre-processed (date unavailable)"
|
211 |
|
212 |
-
#
|
213 |
-
|
214 |
-
if 'size_category' in current_df.columns:
|
215 |
-
for cat in MODEL_SIZE_RANGES.keys():
|
216 |
-
count = (current_df['size_category'] == cat).sum()
|
217 |
-
size_dist_lines.append(f" - {cat}: {count:,} models")
|
218 |
-
else: size_dist_lines.append(" - Size category information not available.")
|
219 |
-
size_dist = "\n".join(size_dist_lines)
|
220 |
-
|
221 |
data_info_text = (f"### Data Information\n"
|
222 |
f"- Source: `{HF_DATASET_ID}`\n"
|
223 |
f"- Overall Status: {status_msg_from_load}\n"
|
224 |
f"- Total models loaded: {len(current_df):,}\n"
|
225 |
-
f"-
|
226 |
-
f"-
|
227 |
|
228 |
status_msg_ui = "Data loaded successfully. Ready to generate plot."
|
229 |
else:
|
@@ -236,8 +267,9 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
236 |
load_success_flag = False
|
237 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
238 |
|
|
|
239 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
240 |
-
|
241 |
if df_current_models is None or df_current_models.empty:
|
242 |
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
|
243 |
error_msg = "Model data is not loaded or is empty. Please wait for data to load."
|
@@ -248,11 +280,10 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
248 |
|
249 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
250 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
251 |
-
size_to_use = size_choice if size_choice != "None" else None
|
252 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
|
253 |
|
254 |
-
|
255 |
-
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use,
|
256 |
|
257 |
progress(0.7, desc="Generating Plotly visualization...")
|
258 |
|
@@ -269,23 +300,22 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
269 |
|
270 |
return plotly_fig, plot_stats_md
|
271 |
|
272 |
-
# On app load, call the controller to fetch data using the datasets library.
|
273 |
demo.load(
|
274 |
fn=ui_load_data_controller,
|
275 |
inputs=[],
|
276 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
277 |
)
|
278 |
|
|
|
279 |
generate_plot_button.click(
|
280 |
fn=ui_generate_plot_controller,
|
281 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
282 |
-
|
283 |
outputs=[plot_output, status_message_md]
|
284 |
)
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
|
288 |
-
# Increase the queue size for potentially busy traffic if hosted
|
289 |
demo.queue().launch()
|
290 |
|
291 |
-
# --- END OF FILE app.py ---
|
|
|
1 |
+
# --- START OF MODIFIED FILE app.py ---
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
|
|
7 |
from datasets import load_dataset # Import the datasets library
|
8 |
|
9 |
# --- Constants ---
|
10 |
+
# REMOVED the old MODEL_SIZE_RANGES dictionary.
|
11 |
+
# NEW: Define the discrete steps for the parameter range slider.
|
12 |
+
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
|
13 |
+
PARAM_CHOICES_DEFAULT = [PARAM_CHOICES[0], PARAM_CHOICES[-1]]
|
14 |
|
15 |
# The Hugging Face dataset ID to load.
|
16 |
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
|
|
42 |
overall_start_time = time.time()
|
43 |
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
44 |
|
|
|
45 |
expected_cols = [
|
46 |
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
|
47 |
+
'organization', 'has_audio', 'has_speech', 'has_music',
|
48 |
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
|
49 |
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
|
50 |
'data_download_timestamp'
|
51 |
]
|
52 |
|
53 |
try:
|
|
|
|
|
54 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
55 |
|
56 |
if not dataset_dict:
|
57 |
raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
|
58 |
|
|
|
59 |
split_name = list(dataset_dict.keys())[0]
|
60 |
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
|
|
|
|
|
61 |
df = dataset_dict[split_name].to_pandas()
|
|
|
62 |
elapsed = time.time() - overall_start_time
|
63 |
|
|
|
64 |
missing_cols = [col for col in expected_cols if col not in df.columns]
|
65 |
if missing_cols:
|
66 |
+
# The 'params' column is crucial for the new slider.
|
67 |
+
if 'params' in missing_cols:
|
68 |
+
raise ValueError(f"FATAL: Loaded dataset is missing the crucial 'params' column.")
|
69 |
+
print(f"Warning: Loaded dataset is missing some expected columns: {missing_cols}.")
|
70 |
+
|
71 |
+
# Ensure 'params' column is numeric, coercing errors to NaN and then filling with 0.
|
72 |
+
# This is important for filtering. Assumes params are in billions.
|
73 |
+
if 'params' in df.columns:
|
74 |
+
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
|
75 |
else:
|
76 |
+
# If 'params' is missing after all, create a dummy column to prevent crashes.
|
77 |
+
df['params'] = 0
|
78 |
+
print("CRITICAL WARNING: 'params' column not found in data. Parameter filtering will not work.")
|
79 |
|
80 |
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
|
81 |
print(msg)
|
|
|
86 |
print(err_msg)
|
87 |
return pd.DataFrame(), False, err_msg
|
88 |
|
89 |
+
# --- NEW: Helper function to parse slider labels into numerical values ---
|
90 |
+
def get_param_range_values(param_range_labels):
|
91 |
+
"""Converts a list of two string labels from the slider into a numerical min/max tuple."""
|
92 |
+
if not param_range_labels or len(param_range_labels) != 2:
|
93 |
+
return None, None
|
94 |
+
|
95 |
+
min_label, max_label = param_range_labels
|
96 |
+
|
97 |
+
# Min value logic: '< 1B' becomes 0, otherwise parse the number.
|
98 |
+
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
|
99 |
+
|
100 |
+
# Max value logic: '> 500B' becomes infinity, otherwise parse the number.
|
101 |
+
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
102 |
+
|
103 |
+
return min_val, max_val
|
104 |
|
105 |
+
# --- MODIFIED: Function signature and filtering logic updated for parameter range ---
|
106 |
+
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
|
107 |
if df is None or df.empty: return pd.DataFrame()
|
108 |
filtered_df = df.copy()
|
109 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
|
|
|
119 |
|
120 |
if pipeline_filter:
|
121 |
if "pipeline_tag" in filtered_df.columns:
|
|
|
122 |
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
|
123 |
else:
|
124 |
print(f"Warning: 'pipeline_tag' column not found for filtering.")
|
125 |
|
126 |
+
# --- MODIFIED: Filtering logic now uses the numerical parameter range ---
|
127 |
+
if param_range:
|
128 |
+
min_params, max_params = get_param_range_values(param_range)
|
129 |
+
is_default_range = (param_range == PARAM_CHOICES_DEFAULT)
|
130 |
+
|
131 |
+
# Only filter if the range is not the default full range
|
132 |
+
if not is_default_range and 'params' in filtered_df.columns:
|
133 |
+
# The 'params' column is in billions, so the values match our slider
|
134 |
+
if min_params is not None:
|
135 |
+
filtered_df = filtered_df[filtered_df['params'] >= min_params]
|
136 |
+
if max_params is not None and max_params != float('inf'):
|
137 |
+
# The upper bound is exclusive, e.g., 5B to 64B is [5, 64)
|
138 |
+
filtered_df = filtered_df[filtered_df['params'] < max_params]
|
139 |
+
elif 'params' not in filtered_df.columns:
|
140 |
+
print("Warning: 'params' column not found for filtering.")
|
141 |
+
|
142 |
|
143 |
if skip_orgs and len(skip_orgs) > 0:
|
144 |
if "organization" in filtered_df.columns:
|
|
|
148 |
|
149 |
if filtered_df.empty: return pd.DataFrame()
|
150 |
|
|
|
151 |
if count_by not in filtered_df.columns:
|
152 |
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
|
153 |
filtered_df[count_by] = 0.0
|
154 |
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
|
155 |
|
|
|
156 |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
|
157 |
top_orgs_list = org_totals.index.tolist()
|
158 |
|
|
|
159 |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
|
160 |
treemap_data["root"] = "models"
|
|
|
161 |
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
|
162 |
return treemap_data
|
163 |
|
|
|
186 |
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
|
187 |
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
|
188 |
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
|
189 |
+
|
190 |
+
# --- MODIFIED: Replaced Dropdown with RangeSlider and a Reset Button ---
|
191 |
+
with gr.Group():
|
192 |
+
with gr.Row():
|
193 |
+
gr.Markdown("<div style='padding-top: 10px; font-weight: 500;'>Parameters</div>")
|
194 |
+
reset_params_button = gr.Button("🔄 Reset", visible=False, size="sm", min_width=80)
|
195 |
+
param_range_slider = gr.RangeSlider(
|
196 |
+
label=None, # Label is handled by Markdown above
|
197 |
+
choices=PARAM_CHOICES,
|
198 |
+
value=PARAM_CHOICES_DEFAULT,
|
199 |
+
)
|
200 |
+
# --- END OF MODIFICATION ---
|
201 |
+
|
202 |
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
|
203 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
204 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
|
|
208 |
status_message_md = gr.Markdown("Initializing...")
|
209 |
data_info_md = gr.Markdown("")
|
210 |
|
211 |
+
# --- NEW: Event handlers for the new parameter slider and reset button ---
|
212 |
+
def _update_reset_button_visibility(current_range):
|
213 |
+
"""Shows the reset button only if the slider is not at its default full range."""
|
214 |
+
is_default = (current_range == PARAM_CHOICES_DEFAULT)
|
215 |
+
return gr.update(visible=not is_default)
|
216 |
+
|
217 |
+
def _reset_param_slider_and_button():
|
218 |
+
"""Resets the slider to its default value and hides the reset button."""
|
219 |
+
return gr.update(value=PARAM_CHOICES_DEFAULT), gr.update(visible=False)
|
220 |
+
|
221 |
+
param_range_slider.release(fn=_update_reset_button_visibility, inputs=param_range_slider, outputs=reset_params_button)
|
222 |
+
reset_params_button.click(fn=_reset_param_slider_and_button, outputs=[param_range_slider, reset_params_button])
|
223 |
+
# --- END OF NEW EVENT HANDLERS ---
|
224 |
+
|
225 |
def _update_button_interactivity(is_loaded_flag):
|
226 |
return gr.update(interactive=is_loaded_flag)
|
227 |
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
|
|
|
237 |
data_info_text = ""
|
238 |
current_df = pd.DataFrame()
|
239 |
load_success_flag = False
|
|
|
240 |
try:
|
|
|
241 |
current_df, load_success_flag, status_msg_from_load = load_models_data()
|
242 |
if load_success_flag:
|
243 |
progress(0.9, desc="Processing loaded data...")
|
|
|
244 |
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
245 |
+
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0]).tz_localize('UTC')
|
|
|
|
|
|
|
246 |
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
|
247 |
else:
|
248 |
data_as_of_date_display = "Pre-processed (date unavailable)"
|
249 |
|
250 |
+
# --- MODIFIED: Removed the old size category distribution text ---
|
251 |
+
param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
data_info_text = (f"### Data Information\n"
|
253 |
f"- Source: `{HF_DATASET_ID}`\n"
|
254 |
f"- Overall Status: {status_msg_from_load}\n"
|
255 |
f"- Total models loaded: {len(current_df):,}\n"
|
256 |
+
f"- Models with parameter counts: {param_count:,}\n"
|
257 |
+
f"- Data as of: {data_as_of_date_display}\n")
|
258 |
|
259 |
status_msg_ui = "Data loaded successfully. Ready to generate plot."
|
260 |
else:
|
|
|
267 |
load_success_flag = False
|
268 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
269 |
|
270 |
+
# --- MODIFIED: Updated controller signature and logic to handle new slider ---
|
271 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
272 |
+
param_range_choice, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
273 |
if df_current_models is None or df_current_models.empty:
|
274 |
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
|
275 |
error_msg = "Model data is not loaded or is empty. Please wait for data to load."
|
|
|
280 |
|
281 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
282 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
|
|
283 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
|
284 |
|
285 |
+
# Pass the param_range_choice directly to make_treemap_data
|
286 |
+
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_range_choice, orgs_to_skip)
|
287 |
|
288 |
progress(0.7, desc="Generating Plotly visualization...")
|
289 |
|
|
|
300 |
|
301 |
return plotly_fig, plot_stats_md
|
302 |
|
|
|
303 |
demo.load(
|
304 |
fn=ui_load_data_controller,
|
305 |
inputs=[],
|
306 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
307 |
)
|
308 |
|
309 |
+
# --- MODIFIED: Updated the inputs list for the click event ---
|
310 |
generate_plot_button.click(
|
311 |
fn=ui_generate_plot_controller,
|
312 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
313 |
+
param_range_slider, top_k_slider, skip_orgs_textbox, models_data_state],
|
314 |
outputs=[plot_output, status_message_md]
|
315 |
)
|
316 |
|
317 |
if __name__ == "__main__":
|
318 |
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
|
|
|
319 |
demo.queue().launch()
|
320 |
|
321 |
+
# --- END OF MODIFIED FILE app.py ---
|