File size: 13,175 Bytes
8327f21
eec69ec
bbf45d0
 
 
961c6fe
b06975a
c0b7e37
 
961c6fe
 
97da54a
c0b7e37
afd7356
b06975a
7064a74
4517d15
 
961c6fe
59d14c6
afd7356
961c6fe
afd7356
 
 
d858aa5
97da54a
 
f0e2fd8
97da54a
d858aa5
afd7356
 
 
c0b7e37
 
 
961c6fe
97da54a
 
 
 
 
961c6fe
97da54a
961c6fe
9c451ee
4517d15
b06975a
 
 
 
97da54a
 
4517d15
97da54a
4517d15
 
b06975a
 
961c6fe
b06975a
0c6bf95
f0e2fd8
961c6fe
 
f0e2fd8
9c451ee
 
 
 
f0e2fd8
961c6fe
9c451ee
4517d15
961c6fe
 
bbf45d0
 
6504db8
ae21931
6504db8
 
535bf1f
 
f9d96a7
535bf1f
 
 
6504db8
 
 
 
 
 
535bf1f
6504db8
0421d9a
 
535bf1f
0421d9a
ae21931
 
 
961c6fe
f0e2fd8
d858aa5
eec69ec
 
 
98b7de8
f0e2fd8
23d71de
9062ccf
 
 
23d71de
59d14c6
 
47e0cf9
bf675e1
6504db8
8327f21
 
 
 
 
 
23d71de
8327f21
 
 
72bf03d
9062ccf
 
 
 
23d71de
59d14c6
afd7356
f0e2fd8
961c6fe
f0e2fd8
 
c0b7e37
ae21931
c0b7e37
ae21931
c0b7e37
ae21931
59d14c6
 
 
 
23d71de
 
59d14c6
961c6fe
afd7356
b06975a
961c6fe
afd7356
961c6fe
b06975a
fa2c2d2
b06975a
 
fa2c2d2
97da54a
4517d15
b06975a
4517d15
961c6fe
4517d15
961c6fe
c0b7e37
 
 
 
961c6fe
4d0811f
961c6fe
c0b7e37
961c6fe
b06975a
d858aa5
b06975a
961c6fe
 
b06975a
f0e2fd8
4517d15
 
 
 
 
9c451ee
b06975a
961c6fe
 
 
afd7356
961c6fe
b06975a
961c6fe
f0e2fd8
d858aa5
4517d15
961c6fe
 
0c6bf95
 
 
c0b7e37
47e0cf9
afd7356
bbf45d0
961c6fe
 
c0b7e37
f0e2fd8
bbf45d0
 
 
d858aa5
0421d9a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# --- START OF FINAL, POLISHED FILE app.py ---

import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# Using the stable, community-built RangeSlider component
from gradio_rangeslider import RangeSlider

# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)

TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/modelverse_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]


def load_models_data():
    overall_start_time = time.time()
    print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
    try:
        dataset_dict = load_dataset(HF_DATASET_ID)
        df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
        if 'params' in df.columns:
            df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(0)
        else:
            df['params'] = 0
        msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
        print(msg)
        return df, True, msg
    except Exception as e:
        err_msg = f"Failed to load dataset. Error: {e}"
        print(err_msg)
        return pd.DataFrame(), False, err_msg

def get_param_range_values(param_range_labels):
    min_label, max_label = param_range_labels
    min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
    max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
    return min_val, max_val

def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
    if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
        filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
    if pipeline_filter and "pipeline_tag" in filtered_df.columns:
        filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
    if param_range:
        min_params, max_params = get_param_range_values(param_range)
        is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
        if not is_default_range and 'params' in filtered_df.columns:
            if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
            if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
    if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
        filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
    if filtered_df.empty: return pd.DataFrame()
    if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
    filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

# --- FINAL, CORRECTED CSS ---
custom_css = """
/* Hide the extra UI elements from the RangeSlider component */
#param-slider-wrapper .head,
#param-slider-wrapper div[data-testid="range-slider"] > span {
    display: none !important;
}

/* 
  THIS IS THE KEY FIX:
  We target all the individual component containers (divs with class .block)
  that are *direct children* of our custom-classed group.
  
  This removes the "box-in-a-box" effect by making the inner component
  containers transparent. The parent gr.Group now acts as the single card,
  which is exactly what we want.
*/
.model-parameters-group > .block {
    background: none !important;
    border: none !important;
    box-shadow: none !important;
}
"""

with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)
    
    with gr.Row():
        gr.Markdown("# 🤗 ModelVerse Explorer")

    with gr.Row():
        with gr.Column(scale=1):
            
            # This section remains un-grouped for a consistent flat look
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            
            # This group's styling will be modified by the custom CSS
            with gr.Group(elem_classes="model-parameters-group"):
                gr.Markdown("<div style='font-weight: 500;'>Model Parameters</div>")
                param_range_slider = RangeSlider(
                    minimum=0,
                    maximum=len(PARAM_CHOICES) - 1,
                    value=PARAM_CHOICES_DEFAULT_INDICES,
                    step=1,
                    label=None,
                    show_label=False,
                    elem_id="param-slider-wrapper"
                )
                param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
            
            # This section remains un-grouped
            top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")
    
    def update_param_display(value: tuple):
        min_idx, max_idx = int(value[0]), int(value[1])
        return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
    
    param_range_slider.change(update_param_display, param_range_slider, param_range_display)

    def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice): 
        return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    def ui_load_data_controller(progress=gr.Progress()):
        progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data()
            if load_success_flag:
                progress(0.9, desc="Processing data...")
                date_display = "Pre-processed (date unavailable)"
                if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
                    date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
                param_count = (current_df['params'] > 0).sum() if 'params' in current_df.columns else 0
                data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with parameter counts: {param_count:,}\n- Data as of: {date_display}\n"
                status_msg_ui = "Data loaded. Ready to generate plot."
            else:
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            load_success_flag = False
            print(f"Critical error in ui_load_data_controller: {e}")
        return current_df, load_success_flag, data_info_text, status_msg_ui

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
        if df_current_models is None or df_current_models.empty:
            return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
        
        progress(0.1, desc="Preparing data...")
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
        
        min_label = PARAM_CHOICES[int(param_range_indices[0])]
        max_label = PARAM_CHOICES[int(param_range_indices[1])]
        param_labels_for_filtering = [min_label, max_label]
        
        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, param_labels_for_filtering, orgs_to_skip)
        
        progress(0.7, desc="Generating plot...")
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Please try different options."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[metric_choice].sum()
            plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
        return plotly_fig, plot_stats_md

    demo.load(
        fn=ui_load_data_controller, 
        inputs=[], 
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )

    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    print(f"Application starting...")
    demo.queue().launch()

# --- END OF FINAL, POLISHED FILE app.py ---