File size: 5,160 Bytes
0dc3013
ed1e9c8
c8ab0ef
ad34200
ed1e9c8
 
c8ab0ef
d9e5666
ad34200
0dc3013
 
 
c8ab0ef
 
 
 
 
0e04af2
e9c8f39
0e04af2
e9c8f39
 
0e04af2
 
c8ab0ef
 
0dc3013
c8ab0ef
 
 
 
 
 
 
d9e5666
ad34200
 
 
 
 
 
 
 
 
 
 
 
0dc3013
 
0e04af2
 
 
 
 
 
 
 
 
 
0dc3013
47f233b
c8ab0ef
0dc3013
 
c8ab0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4e150d
c8ab0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e5666
ad34200
 
 
 
 
 
 
 
ec37392
ad34200
 
 
 
 
ec37392
 
 
 
 
ad34200
 
 
 
 
 
 
 
47f233b
ad34200
 
 
 
 
0e04af2
ad34200
 
 
 
 
 
ec37392
d4e150d
ad34200
 
 
d9e5666
 
0e04af2
d9e5666
ad34200
 
d9e5666
ad34200
 
 
 
 
 
 
 
 
 
 
 
 
d9e5666
 
ad34200
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import spaces
import gradio as gr
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
import torch
from threading import Thread
from transformers import TextIteratorStreamer
import os

# Initialize model and tokenizer
MODEL_ID = "erikbeltran/pydiff"
GGUF_FILE = "unsloth.Q4_K_M.gguf"

try:
    # Use PreTrainedTokenizerFast instead of LlamaTokenizer
    tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID)
    
    # Ensure the tokenizer has the necessary special tokens
    special_tokens = {
    #    'pad_token': '[PAD]',
        'eos_token': '<|eot_id|>'
    #    'bos_token': '<s>',
    # 3   'unk_token': '<unk>'
    }
    tokenizer.add_special_tokens(special_tokens)
    
    model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)

    # Move model to GPU if available
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = model.to(device)
    
except Exception as e:
    print(f"Error initializing model or tokenizer: {str(e)}")
    raise

def format_diff_response(response):
    """Format the response to look like a diff output"""
    lines = response.split('\n')
    formatted = []
    for line in lines:
        if line.startswith('+'):
            formatted.append(f'<span style="color: green">{line}</span>')
        elif line.startswith('-'):
            formatted.append(f'<span style="color: red">{line}</span>')
        else:
            formatted.append(line)
    return '<br>'.join(formatted)

def create_prompt(request, file_content, system_message):
#    return f"""<system>{system_message}</system>
#<request>{request}</request>
#<file>{file_content}</file>"""
    return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 July 2024

{system_message}<|eot_id|><|start_header_id|>user<|end_header_id|>

<request>{request}</request>
<file>{file_content}</file><|eot_id|><|start_header_id|>assistant<|end_header_id|>"""

@spaces.GPU
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
    try:
        prompt = create_prompt(request, file_content, system_message)
        
        # Tokenize input
        inputs = tokenizer(
            prompt, 
            return_tensors="pt", 
            add_special_tokens=True,
            padding=True,
            truncation=True,
            max_length=2048
        ).to(device)
        
        # Generate response with streaming
        response = ""
        streamer = TextIteratorStreamer(tokenizer,skip_prompt = True , skip_special_tokens=True)
        
        generation_kwargs = dict(
            input_ids=inputs["input_ids"],
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            streamer=streamer,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
            do_sample=True,
        )
        
        # Start generation in a separate thread
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        # Yield formatted responses as they're generated
        for new_text in streamer:
            response += new_text
            yield format_diff_response(response)
            
    except Exception as e:
        yield f"<span style='color: red'>Error generating response: {str(e)}</span>"

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Code Review Assistant")
    
    with gr.Row():
        with gr.Column():
            request_input = gr.Textbox(
                label="Request",
                value="fix the error",
                placeholder="Enter your request (e.g., 'fix the function', 'add error handling')",
                lines=3
            )
            file_input = gr.Code(
                label="File Content",
                value="""def suma(a, b):
    return a + b

print(suma(5, "3")) 
                """,
                language="python",
                lines=10
            )
        with gr.Column():
            output = gr.HTML(label="Diff Output")
    
    with gr.Accordion("Advanced Settings", open=False):
        system_msg = gr.Textbox(
            value="you are a coder asistant, returns the answer to user in diff format",
            label="System Message"
        )
        max_tokens = gr.Slider(
            minimum=1,
            maximum=2048,
            value=128,
            step=1,
            label="Max Tokens"
        )
        temperature = gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.5,
            step=0.5,
            label="Temperature"
        )
        top_p = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=1,
            step=0.05,
            label="Top-p"
        )

    submit_btn = gr.Button("Submit")
    submit_btn.click(
        fn=respond,
        inputs=[
            request_input,
            file_input,
            system_msg,
            max_tokens,
            temperature,
            top_p
        ],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()