Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,37 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
from transformers import TextIteratorStreamer
|
|
|
7 |
|
8 |
# Initialize model and tokenizer
|
9 |
MODEL_ID = "erikbeltran/pydiff"
|
10 |
GGUF_FILE = "unsloth.Q4_K_M.gguf"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Move model to GPU if available
|
17 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
-
model = model.to(device)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def format_diff_response(response):
|
21 |
"""Format the response to look like a diff output"""
|
@@ -36,36 +52,48 @@ def create_prompt(request, file_content, system_message):
|
|
36 |
<file>
|
37 |
{file_content}
|
38 |
</file>"""
|
39 |
-
|
40 |
@spaces.GPU
|
41 |
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Create the Gradio interface
|
71 |
with gr.Blocks() as demo:
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
from transformers import TextIteratorStreamer
|
7 |
+
import os
|
8 |
|
9 |
# Initialize model and tokenizer
|
10 |
MODEL_ID = "erikbeltran/pydiff"
|
11 |
GGUF_FILE = "unsloth.Q4_K_M.gguf"
|
12 |
|
13 |
+
try:
|
14 |
+
# Use PreTrainedTokenizerFast instead of LlamaTokenizer
|
15 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID)
|
16 |
+
|
17 |
+
# Ensure the tokenizer has the necessary special tokens
|
18 |
+
special_tokens = {
|
19 |
+
'pad_token': '[PAD]',
|
20 |
+
'eos_token': '</s>',
|
21 |
+
'bos_token': '<s>',
|
22 |
+
'unk_token': '<unk>'
|
23 |
+
}
|
24 |
+
tokenizer.add_special_tokens(special_tokens)
|
25 |
+
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
|
27 |
|
28 |
+
# Move model to GPU if available
|
29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
+
model = model.to(device)
|
31 |
+
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error initializing model or tokenizer: {str(e)}")
|
34 |
+
raise
|
35 |
|
36 |
def format_diff_response(response):
|
37 |
"""Format the response to look like a diff output"""
|
|
|
52 |
<file>
|
53 |
{file_content}
|
54 |
</file>"""
|
55 |
+
|
56 |
@spaces.GPU
|
57 |
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
|
58 |
+
try:
|
59 |
+
prompt = create_prompt(request, file_content, system_message)
|
60 |
+
|
61 |
+
# Tokenize input
|
62 |
+
inputs = tokenizer(
|
63 |
+
prompt,
|
64 |
+
return_tensors="pt",
|
65 |
+
add_special_tokens=True,
|
66 |
+
padding=True,
|
67 |
+
truncation=True,
|
68 |
+
max_length=2048
|
69 |
+
).to(device)
|
70 |
+
|
71 |
+
# Generate response with streaming
|
72 |
+
response = ""
|
73 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
74 |
+
|
75 |
+
generation_kwargs = dict(
|
76 |
+
input_ids=inputs["input_ids"],
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
temperature=temperature,
|
79 |
+
top_p=top_p,
|
80 |
+
streamer=streamer,
|
81 |
+
pad_token_id=tokenizer.pad_token_id,
|
82 |
+
eos_token_id=tokenizer.eos_token_id,
|
83 |
+
do_sample=True,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Start generation in a separate thread
|
87 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
88 |
+
thread.start()
|
89 |
+
|
90 |
+
# Yield formatted responses as they're generated
|
91 |
+
for new_text in streamer:
|
92 |
+
response += new_text
|
93 |
+
yield format_diff_response(response)
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
yield f"<span style='color: red'>Error generating response: {str(e)}</span>"
|
97 |
|
98 |
# Create the Gradio interface
|
99 |
with gr.Blocks() as demo:
|