Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
-
import gradio as gr
|
2 |
import spaces
|
3 |
-
|
|
|
4 |
import torch
|
|
|
|
|
5 |
|
6 |
# Initialize model and tokenizer
|
7 |
MODEL_ID = "erikbeltran/pydiff"
|
8 |
GGUF_FILE = "unsloth.Q4_K_M.gguf"
|
9 |
|
10 |
-
|
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
|
12 |
|
13 |
# Move model to GPU if available
|
@@ -33,24 +36,26 @@ def create_prompt(request, file_content, system_message):
|
|
33 |
<file>
|
34 |
{file_content}
|
35 |
</file>"""
|
36 |
-
|
37 |
@spaces.GPU
|
38 |
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
|
39 |
prompt = create_prompt(request, file_content, system_message)
|
40 |
|
41 |
# Tokenize input
|
42 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
43 |
|
44 |
# Generate response with streaming
|
45 |
response = ""
|
46 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
47 |
|
48 |
generation_kwargs = dict(
|
49 |
-
|
50 |
max_new_tokens=max_tokens,
|
51 |
temperature=temperature,
|
52 |
top_p=top_p,
|
53 |
streamer=streamer,
|
|
|
|
|
54 |
)
|
55 |
|
56 |
# Start generation in a separate thread
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
+
from threading import Thread
|
6 |
+
from transformers import TextIteratorStreamer
|
7 |
|
8 |
# Initialize model and tokenizer
|
9 |
MODEL_ID = "erikbeltran/pydiff"
|
10 |
GGUF_FILE = "unsloth.Q4_K_M.gguf"
|
11 |
|
12 |
+
# Use LlamaTokenizer directly instead of AutoTokenizer
|
13 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID)
|
14 |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
|
15 |
|
16 |
# Move model to GPU if available
|
|
|
36 |
<file>
|
37 |
{file_content}
|
38 |
</file>"""
|
39 |
+
|
40 |
@spaces.GPU
|
41 |
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
|
42 |
prompt = create_prompt(request, file_content, system_message)
|
43 |
|
44 |
# Tokenize input
|
45 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).to(device)
|
46 |
|
47 |
# Generate response with streaming
|
48 |
response = ""
|
49 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
50 |
|
51 |
generation_kwargs = dict(
|
52 |
+
input_ids=inputs["input_ids"],
|
53 |
max_new_tokens=max_tokens,
|
54 |
temperature=temperature,
|
55 |
top_p=top_p,
|
56 |
streamer=streamer,
|
57 |
+
pad_token_id=tokenizer.pad_token_id,
|
58 |
+
eos_token_id=tokenizer.eos_token_id,
|
59 |
)
|
60 |
|
61 |
# Start generation in a separate thread
|