Spaces:
Paused
Paused
File size: 63,295 Bytes
ceb2d3f d67e469 ceb2d3f 5714b0e ceb2d3f 011279d 9965e97 ceb2d3f 9965e97 ceb2d3f 9965e97 ceb2d3f 9965e97 ceb2d3f 011279d 9965e97 ceb2d3f 3eee156 ceb2d3f 3eee156 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f a5fe401 ceb2d3f 1407881 ceb2d3f f2b6699 ceb2d3f f2b6699 1407881 ceb2d3f f2b6699 ceb2d3f 1407881 ceb2d3f 1407881 ceb2d3f 1407881 f2b6699 ceb2d3f a5fe401 ceb2d3f 1407881 20ac8ec ceb2d3f 1407881 ceb2d3f 20ac8ec a0b9812 3eee156 f2b6699 3eee156 a5fe401 3eee156 20ac8ec 3eee156 33b0c88 3eee156 f2b6699 3eee156 f2b6699 3eee156 ac15860 3eee156 f2b6699 3eee156 f2b6699 3eee156 a5fe401 3eee156 daa166f 3eee156 1407881 baa6ed0 1407881 baa6ed0 fd9c54a 9965e97 daa166f 08ea6d3 9965e97 c2c9ec8 a5fe401 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 bb07972 c2c9ec8 91fa1a7 9965e97 c2c9ec8 9965e97 011279d f2b6699 8ea3b6d 1407881 8ea3b6d f2b6699 8ea3b6d f2b6699 8ea3b6d f2b6699 8ea3b6d f2b6699 8ea3b6d f2b6699 8ea3b6d f2b6699 8ea3b6d 5b88da1 9965e97 5b88da1 9965e97 f2b6699 9965e97 f2b6699 ecd1550 5b88da1 5c732dd 1407881 a0658e4 cc16fb5 f2b6699 cc16fb5 c5889cd cc16fb5 f1f58de 5fc0c82 f2b6699 6ce2755 cc16fb5 69fedc7 cc16fb5 69fedc7 cc16fb5 f2b6699 a5dd543 011279d d15ef34 011279d f2b6699 1407881 9e836dd 1c96581 c92f69a 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 ceb2d3f 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 1407881 f2b6699 ceb2d3f f2b6699 9111566 e24c2d3 f2b6699 a5fe401 9111566 f2b6699 1407881 a6a5eec f2b6699 b63d593 2ff3c92 f2b6699 9111566 0c06c69 9111566 1407881 9111566 1407881 b63d593 f2b6699 c92f69a 1407881 c92f69a f19f714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 |
# import os
# import re
# import time
# import requests
# import logging
# import folium
# import gradio as gr
# import tempfile
# import torch
# from datetime import datetime
# import numpy as np
# from gtts import gTTS
# from googlemaps import Client as GoogleMapsClient
# from diffusers import StableDiffusion3Pipeline
# import concurrent.futures
# from PIL import Image
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
# from langchain_pinecone import PineconeVectorStore
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.chains.conversation.memory import ConversationBufferWindowMemory
# from langchain.agents import Tool, initialize_agent
# from huggingface_hub import login
# # Check if the token is already set in the environment variables
# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
# # If the token is not set, prompt for it (this should be done securely)
# print("Please set your Hugging Face token in the environment variables.")
# else:
# # Login using the token
# login(token=hf_token)
# # Your application logic goes here
# print("Logged in successfully to Hugging Face Hub!")
# # Set up logging
# logging.basicConfig(level=logging.DEBUG)
# # Initialize OpenAI embeddings
# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# # Initialize Pinecone
# from pinecone import Pinecone
# pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
# index_name = "omaha-details"
# vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
# retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# # Initialize ChatOpenAI model
# chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
# temperature=0, model='gpt-4o')
# conversational_memory = ConversationBufferWindowMemory(
# memory_key='chat_history',
# k=10,
# return_messages=True
# )
# def get_current_time_and_date():
# now = datetime.now()
# return now.strftime("%Y-%m-%d %H:%M:%S")
# # Example usage
# current_time_and_date = get_current_time_and_date()
# # def fetch_local_events():
# # api_key = os.environ['SERP_API']
# # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
# # response = requests.get(url)
# # if response.status_code == 200:
# # events_results = response.json().get("events_results", [])
# # events_html = """
# # <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# # <style>
# # .event-item {
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # background-color: #f0f8ff;
# # margin-bottom: 15px;
# # padding: 10px;
# # border: 1px solid #ddd;
# # border-radius: 5px;
# # border: 2px solid red; /* Added red border */
# # transition: box-shadow 0.3s ease, background-color 0.3s ease;
# # font-weight: bold;
# # }
# # .event-item:hover {
# # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# # background-color: #e6f7ff;
# # }
# # .event-item a {
# # color: #1E90FF;
# # text-decoration: none;
# # font-weight: bold;
# # }
# # .event-item a:hover {
# # text-decoration: underline;
# # }
# # .event-preview {
# # position: absolute;
# # display: none;
# # border: 1px solid #ccc;
# # border-radius: 5px;
# # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# # background-color: white;
# # z-index: 1000;
# # max-width: 300px;
# # padding: 10px;
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # }
# # </style>
# # <script>
# # function showPreview(event, previewContent) {
# # var previewBox = document.getElementById('event-preview');
# # previewBox.innerHTML = previewContent;
# # previewBox.style.left = event.pageX + 'px';
# # previewBox.style.top = event.pageY + 'px';
# # previewBox.style.display = 'block';
# # }
# # function hidePreview() {
# # var previewBox = document.getElementById('event-preview');
# # previewBox.style.display = 'none';
# # }
# # </script>
# # <div id="event-preview" class="event-preview"></div>
# # """
# # for index, event in enumerate(events_results):
# # title = event.get("title", "No title")
# # date = event.get("date", "No date")
# # location = event.get("address", "No location")
# # link = event.get("link", "#")
# # events_html += f"""
# # <div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
# # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# # <p>Date: {date}<br>Location: {location}</p>
# # </div>
# # """
# # return events_html
# # else:
# # return "<p>Failed to fetch local events</p>"
# # def fetch_local_events():
# # api_key = os.environ['SERP_API']
# # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
# # response = requests.get(url)
# # if response.status_code == 200:
# # events_results = response.json().get("events_results", [])
# # events_html = """
# # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# # <style>
# # .event-item {
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # background-color: #f0f8ff;
# # margin-bottom: 15px;
# # padding: 10px;
# # border-radius: 5px;
# # transition: box-shadow 0.3s ease, background-color 0.3s ease;
# # font-weight: bold;
# # }
# # .event-item:hover {
# # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# # background-color: #e6f7ff;
# # }
# # .event-item a {
# # color: #1E90FF;
# # text-decoration: none;
# # font-weight: bold;
# # }
# # .event-item a:hover {
# # text-decoration: underline;
# # }
# # .event-preview {
# # position: absolute;
# # display: none;
# # border: 1px solid #ccc;
# # border-radius: 5px;
# # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# # background-color: white;
# # z-index: 1000;
# # max-width: 300px;
# # padding: 10px;
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # }
# # </style>
# # <script>
# # function showPreview(event, previewContent) {
# # var previewBox = document.getElementById('event-preview');
# # previewBox.innerHTML = previewContent;
# # previewBox.style.left = event.pageX + 'px';
# # previewBox.style.top = event.pageY + 'px';
# # previewBox.style.display = 'block';
# # }
# # function hidePreview() {
# # var previewBox = document.getElementById('event-preview');
# # previewBox.style.display = 'none';
# # }
# # </script>
# # <div id="event-preview" class="event-preview"></div>
# # """
# # for index, event in enumerate(events_results):
# # title = event.get("title", "No title")
# # date = event.get("date", "No date")
# # location = event.get("address", "No location")
# # link = event.get("link", "#")
# # events_html += f"""
# # <div class="event-item" onmouseover="showPreview(event, 'Date: {date}<br>Location: {location}')" onmouseout="hidePreview()">
# # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# # <p>Date: {date}<br>Location: {location}</p>
# # </div>
# # """
# # return events_html
# # else:
# # return "<p>Failed to fetch local events</p>"
# def fetch_local_events():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# events_results = response.json().get("events_results", [])
# events_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
# <style>
# .event-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# margin-bottom: 15px;
# padding: 10px;
# font-weight: bold;
# }
# .event-item a {
# color: #1E90FF;
# text-decoration: none;
# }
# .event-item a:hover {
# text-decoration: underline;
# }
# </style>
# """
# for index, event in enumerate(events_results):
# title = event.get("title", "No title")
# date = event.get("date", "No date")
# location = event.get("address", "No location")
# link = event.get("link", "#")
# events_html += f"""
# <div class="event-item">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>Date: {date}<br>Location: {location}</p>
# </div>
# """
# return events_html
# else:
# return "<p>Failed to fetch local events</p>"
# # def fetch_local_weather():
# # try:
# # api_key = os.environ['WEATHER_API']
# # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
# # response = requests.get(url)
# # response.raise_for_status()
# # jsonData = response.json()
# # current_conditions = jsonData.get("currentConditions", {})
# # temp_celsius = current_conditions.get("temp", "N/A")
# # if temp_celsius != "N/A":
# # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
# # else:
# # temp_fahrenheit = "N/A"
# # condition = current_conditions.get("conditions", "N/A")
# # humidity = current_conditions.get("humidity", "N/A")
# # weather_html = f"""
# # <div class="weather-theme">
# # <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
# # <div class="weather-content">
# # <div class="weather-icon">
# # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
# # </div>
# # <div class="weather-details">
# # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
# # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
# # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
# # </div>
# # </div>
# # </div>
# # <style>
# # .weather-theme {{
# # animation: backgroundAnimation 10s infinite alternate;
# # border: 2px solid red; /* Added red border */
# # border-radius: 10px;
# # padding: 10px;
# # margin-bottom: 15px;
# # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
# # background-size: 400% 400%;
# # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# # transition: box-shadow 0.3s ease, background-color 0.3s ease;
# # }}
# # .weather-theme:hover {{
# # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
# # background-position: 100% 100%;
# # }}
# # @keyframes backgroundAnimation {{
# # 0% {{ background-position: 0% 50%; }}
# # 100% {{ background-position: 100% 50%; }}
# # }}
# # .weather-content {{
# # display: flex;
# # align-items: center;
# # }}
# # .weather-icon {{
# # flex: 1;
# # }}
# # .weather-details {{
# # flex: 3;
# # }}
# # </style>
# # """
# # return weather_html
# # except requests.exceptions.RequestException as e:
# # return f"<p>Failed to fetch local weather: {e}</p>"
# def fetch_local_weather():
# try:
# api_key = os.environ['WEATHER_API']
# url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
# response = requests.get(url)
# response.raise_for_status()
# jsonData = response.json()
# current_conditions = jsonData.get("currentConditions", {})
# temp_celsius = current_conditions.get("temp", "N/A")
# if temp_celsius != "N/A":
# temp_fahrenheit = int((temp_celsius * 9/5) + 32)
# else:
# temp_fahrenheit = "N/A"
# condition = current_conditions.get("conditions", "N/A")
# humidity = current_conditions.get("humidity", "N/A")
# weather_html = f"""
# <div class="weather-theme">
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
# <div class="weather-content">
# <div class="weather-icon">
# <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
# </div>
# <div class="weather-details">
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
# <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
# </div>
# </div>
# </div>
# <style>
# .weather-theme {{
# animation: backgroundAnimation 10s infinite alternate;
# border-radius: 10px;
# padding: 10px;
# margin-bottom: 15px;
# background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
# background-size: 400% 400%;
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# }}
# .weather-theme:hover {{
# box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
# background-position: 100% 100%;
# }}
# @keyframes backgroundAnimation {{
# 0% {{ background-position: 0% 50%; }}
# 100% {{ background-position: 100% 50%; }}
# }}
# .weather-content {{
# display: flex;
# align-items: center;
# }}
# .weather-icon {{
# flex: 1;
# }}
# .weather-details {{
# flex: 3;
# }}
# </style>
# """
# return weather_html
# except requests.exceptions.RequestException as e:
# return f"<p>Failed to fetch local weather: {e}</p>"
# def get_weather_icon(condition):
# condition_map = {
# "Clear": "c01d",
# "Partly Cloudy": "c02d",
# "Cloudy": "c03d",
# "Overcast": "c04d",
# "Mist": "a01d",
# "Patchy rain possible": "r01d",
# "Light rain": "r02d",
# "Moderate rain": "r03d",
# "Heavy rain": "r04d",
# "Snow": "s01d",
# "Thunderstorm": "t01d",
# "Fog": "a05d",
# }
# return condition_map.get(condition, "c04d")
# # Update prompt templates to include fetched details
# current_time_and_date = get_current_time_and_date()
# # Define prompt templates
# template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on weather being a sunny bright day and the today's date is 20th june 2024, use the following pieces of context,
# memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
# Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
# event type and description. Always say "It was my pleasure!" at the end of the answer.
# {context}
# Question: {question}
# Helpful Answer:"""
# template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and today's date is 20th june 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
# memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
# Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
# {context}
# Question: {question}
# Helpful Answer:"""
# QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
# QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# # Define the retrieval QA chain
# def build_qa_chain(prompt_template):
# qa_chain = RetrievalQA.from_chain_type(
# llm=chat_model,
# chain_type="stuff",
# retriever=retriever,
# chain_type_kwargs={"prompt": prompt_template}
# )
# tools = [
# Tool(
# name='Knowledge Base',
# func=qa_chain,
# description='Use this tool when answering general knowledge queries to get more information about the topic'
# )
# ]
# return qa_chain, tools
# # Define the agent initializer
# def initialize_agent_with_prompt(prompt_template):
# qa_chain, tools = build_qa_chain(prompt_template)
# agent = initialize_agent(
# agent='chat-conversational-react-description',
# tools=tools,
# llm=chat_model,
# verbose=False,
# max_iteration=5,
# early_stopping_method='generate',
# memory=conversational_memory
# )
# return agent
# # Define the function to generate answers
# def generate_answer(message, choice):
# logging.debug(f"generate_answer called with prompt_choice: {choice}")
# if choice == "Details":
# agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
# elif choice == "Conversational":
# agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
# else:
# logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
# agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
# response = agent(message)
# # Extract addresses for mapping regardless of the choice
# addresses = extract_addresses(response['output'])
# return response['output'], addresses
# def bot(history, choice):
# if not history:
# return history
# response, addresses = generate_answer(history[-1][0], choice)
# history[-1][1] = ""
# # Generate audio for the entire response in a separate thread
# with concurrent.futures.ThreadPoolExecutor() as executor:
# audio_future = executor.submit(generate_audio_elevenlabs, response)
# for character in response:
# history[-1][1] += character
# time.sleep(0.05) # Adjust the speed of text appearance
# yield history, None
# audio_path = audio_future.result()
# yield history, audio_path
# def add_message(history, message):
# history.append((message, None))
# return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
# def print_like_dislike(x: gr.LikeData):
# print(x.index, x.value, x.liked)
# def extract_addresses(response):
# if not isinstance(response, str):
# response = str(response)
# address_patterns = [
# r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
# r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
# r'([A-Z].*,\sNE\s\d{5})',
# r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
# r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
# r'(\d{2}.*\sStreets)',
# r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
# ]
# addresses = []
# for pattern in address_patterns:
# addresses.extend(re.findall(pattern, response))
# return addresses
# all_addresses = []
# def generate_map(location_names):
# global all_addresses
# all_addresses.extend(location_names)
# api_key = os.environ['GOOGLEMAPS_API_KEY']
# gmaps = GoogleMapsClient(key=api_key)
# m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
# for location_name in all_addresses:
# geocode_result = gmaps.geocode(location_name)
# if geocode_result:
# location = geocode_result[0]['geometry']['location']
# folium.Marker(
# [location['lat'], location['lng']],
# tooltip=f"{geocode_result[0]['formatted_address']}"
# ).add_to(m)
# map_html = m._repr_html_()
# return map_html
# # def fetch_local_news():
# # api_key = os.environ['SERP_API']
# # url = f'https://serpapi.com/search.json?engine=google_news&q=omaha headline&api_key={api_key}'
# # response = requests.get(url)
# # if response.status_code == 200:
# # results = response.json().get("news_results", [])
# # news_html = """
# # <h2 style="font-family: 'Georgia', serif; color: #4CAF50; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today </h2>
# # <style>
# # .news-item {
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # background-color: #f0f8ff;
# # margin-bottom: 15px;
# # padding: 10px;
# # border: 2px solid red; /* Added red border */
# # border-radius: 5px;
# # transition: box-shadow 0.3s ease, background-color 0.3s ease;
# # font-weight: bold;
# # }
# # .news-item:hover {
# # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# # background-color: #e6f7ff;
# # }
# # .news-item a {
# # color: #1E90FF;
# # text-decoration: none;
# # font-weight: bold;
# # }
# # .news-item a:hover {
# # text-decoration: underline;
# # }
# # .news-preview {
# # position: absolute;
# # display: none;
# # border: 1px solid #ccc;
# # border-radius: 5px;
# # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# # background-color: white;
# # z-index: 1000;
# # max-width: 300px;
# # padding: 10px;
# # font-family: 'Verdana', sans-serif;
# # color: #333;
# # }
# # </style>
# # <script>
# # function showPreview(event, previewContent) {
# # var previewBox = document.getElementById('news-preview');
# # previewBox.innerHTML = previewContent;
# # previewBox.style.left = event.pageX + 'px';
# # previewBox.style.top = event.pageY + 'px';
# # previewBox.style.display = 'block';
# # }
# # function hidePreview() {
# # var previewBox = document.getElementById('news-preview');
# # previewBox.style.display = 'none';
# # }
# # </script>
# # <div id="news-preview" class="news-preview"></div>
# # """
# # for index, result in enumerate(results[:7]):
# # title = result.get("title", "No title")
# # link = result.get("link", "#")
# # snippet = result.get("snippet", "")
# # news_html += f"""
# # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
# # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# # <p>{snippet}</p>
# # </div>
# # """
# # return news_html
# # else:
# # return "<p>Failed to fetch local news</p>"
# def fetch_local_news():
# api_key = os.environ['SERP_API']
# url = f'https://serpapi.com/search.json?engine=google_news&q=omaha headline&api_key={api_key}'
# response = requests.get(url)
# if response.status_code == 200:
# results = response.json().get("news_results", [])
# news_html = """
# <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today</h2>
# <style>
# .news-item {
# font-family: 'Verdana', sans-serif;
# color: #333;
# background-color: #f0f8ff;
# margin-bottom: 15px;
# padding: 10px;
# border-radius: 5px;
# transition: box-shadow 0.3s ease, background-color 0.3s ease;
# font-weight: bold;
# }
# .news-item:hover {
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
# background-color: #e6f7ff;
# }
# .news-item a {
# color: #1E90FF;
# text-decoration: none;
# font-weight: bold;
# }
# .news-item a:hover {
# text-decoration: underline;
# }
# .news-preview {
# position: absolute;
# display: none;
# border: 1px solid #ccc;
# border-radius: 5px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
# background-color: white;
# z-index: 1000;
# max-width: 300px;
# padding: 10px;
# font-family: 'Verdana', sans-serif;
# color: #333;
# }
# </style>
# <script>
# function showPreview(event, previewContent) {
# var previewBox = document.getElementById('news-preview');
# previewBox.innerHTML = previewContent;
# previewBox.style.left = event.pageX + 'px';
# previewBox.style.top = event.pageY + 'px';
# previewBox.style.display = 'block';
# }
# function hidePreview() {
# var previewBox = document.getElementById('news-preview');
# previewBox.style.display = 'none';
# }
# </script>
# <div id="news-preview" class="news-preview"></div>
# """
# for index, result in enumerate(results[:7]):
# title = result.get("title", "No title")
# link = result.get("link", "#")
# snippet = result.get("snippet", "")
# news_html += f"""
# <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
# <a href='{link}' target='_blank'>{index + 1}. {title}</a>
# <p>{snippet}</p>
# </div>
# """
# return news_html
# else:
# return "<p>Failed to fetch local news</p>"
# # Voice Control
# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
# #low_cpu_mem_usage=True,
# use_safetensors=True).to(device)
# processor = AutoProcessor.from_pretrained(model_id)
# # Optimized ASR pipeline
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
# base_audio_drive = "/data/audio"
# import numpy as np
# def transcribe_function(stream, new_chunk):
# try:
# sr, y = new_chunk[0], new_chunk[1]
# except TypeError:
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
# return stream, "", None
# y = y.astype(np.float32) / np.max(np.abs(y))
# if stream is not None:
# stream = np.concatenate([stream, y])
# else:
# stream = y
# result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
# full_text = result.get("text", "")
# return stream, full_text, result
# def update_map_with_response(history):
# if not history:
# return ""
# response = history[-1][1]
# addresses = extract_addresses(response)
# return generate_map(addresses)
# def clear_textbox():
# return ""
# def show_map_if_details(history,choice):
# if choice in ["Details", "Conversational"]:
# return gr.update(visible=True), update_map_with_response(history)
# else:
# return gr.update(visible(False), "")
# def generate_audio_elevenlabs(text):
# XI_API_KEY = os.environ['ELEVENLABS_API']
# VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' # Replace with your voice ID
# tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
# headers = {
# "Accept": "application/json",
# "xi-api-key": XI_API_KEY
# }
# data = {
# "text": str(text),
# "model_id": "eleven_multilingual_v2",
# "voice_settings": {
# "stability": 1.0,
# "similarity_boost": 0.0,
# "style": 0.60, # Adjust style for more romantic tone
# "use_speaker_boost": False
# }
# }
# response = requests.post(tts_url, headers=headers, json=data, stream=True)
# if response.ok:
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
# for chunk in response.iter_content(chunk_size=1024):
# f.write(chunk)
# temp_audio_path = f.name
# logging.debug(f"Audio saved to {temp_audio_path}")
# return temp_audio_path
# else:
# logging.error(f"Error generating audio: {response.text}")
# return None
# # Stable Diffusion setup
# pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
# pipe = pipe.to("cuda")
# def generate_image(prompt):
# image = pipe(
# prompt,
# negative_prompt="",
# num_inference_steps=28,
# guidance_scale=3.0,
# ).images[0]
# return image
# # Hardcoded prompt for image generation
# # hardcoded_prompt_1 = "Useing The top events like 'Summer Art Festival'and Date - 06/19/2024 ,Weather-Sunny Bright Day.Create Highly Visually Compelling High Resolution and High Quality Photographics Advatizement for 'Toyota'"
# hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 toyota coupe against a skyline setting in th night, michael mann style in omaha enticing the consumer to buy this product"
# # hardcoded_prompt_2 = "Create a vibrant poster of Nebraska with beautiful weather, featuring picturesque landscapes, clear skies, and the word 'Nebraska' prominently displayed."
# hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
# hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
# def update_images():
# image_1 = generate_image(hardcoded_prompt_1)
# image_2 = generate_image(hardcoded_prompt_2)
# image_3 = generate_image(hardcoded_prompt_3)
# return image_1, image_2, image_3
# with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
# with gr.Row():
# with gr.Column():
# state = gr.State()
# chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
# choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
# gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
# chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
# chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
# bot_msg = chat_msg.then(bot, [chatbot, choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
# bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
# chatbot.like(print_like_dislike, None, None)
# clear_button = gr.Button("Clear")
# clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
# audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
# gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
# location_output = gr.HTML()
# bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
# with gr.Column():
# weather_output = gr.HTML(value=fetch_local_weather())
# news_output = gr.HTML(value=fetch_local_news())
# news_output = gr.HTML(value=fetch_local_events())
# with gr.Column():
# image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
# image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
# image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
# refresh_button = gr.Button("Refresh Images")
# refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
# demo.queue()
# demo.launch(share=True)
import os
import re
import time
import requests
import logging
import folium
import gradio as gr
import tempfile
import torch
from datetime import datetime
import numpy as np
from gtts import gTTS
from googlemaps import Client as GoogleMapsClient
from diffusers import StableDiffusion3Pipeline
import concurrent.futures
from PIL import Image
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.agents import Tool, initialize_agent
from huggingface_hub import login
import sqlite3
from passlib.hash import bcrypt
# Check if the token is already set in the environment variables
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
# If the token is not set, prompt for it (this should be done securely)
print("Please set your Hugging Face token in the environment variables.")
else:
# Login using the token
login(token=hf_token)
# Your application logic goes here
print("Logged in successfully to Hugging Face Hub!")
# Set up logging
logging.basicConfig(level=logging.DEBUG)
# Initialize OpenAI embeddings
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "omaha-details"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
# Initialize ChatOpenAI model
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
def get_current_time_and_date():
now = datetime.now()
return now.strftime("%Y-%m-%d %H:%M:%S")
# Example usage
current_time_and_date = get_current_time_and_date()
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
.event-item {
font-family: 'Verdana', sans-serif;
color: #333;
margin-bottom: 15px;
padding: 10px;
font-weight: bold;
}
.event-item a {
color: #1E90FF;
text-decoration: none;
}
.event-item a:hover {
text-decoration: underline;
}
</style>
"""
for index, event in enumerate(events_results):
title = event.get("title", "No title")
date = event.get("date", "No date")
location = event.get("address", "No location")
link = event.get("link", "#")
events_html += f"""
<div class="event-item">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>Date: {date}<br>Location: {location}</p>
</div>
"""
return events_html
else:
return "<p>Failed to fetch local events</p>"
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp_celsius = current_conditions.get("temp", "N/A")
if temp_celsius != "N/A":
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
else:
temp_fahrenheit = "N/A"
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex: 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c04d")
current_time_and_date = get_current_time_and_date()
# Define prompt templates
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on weather being a sunny bright day and the today's date is 20th june 2024, use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
event type and description. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and today's date is 20th june 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Define the retrieval QA chain
def build_qa_chain(prompt_template):
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
tools = [
Tool(
name='Knowledge Base',
func=qa_chain,
description='Use this tool when answering general knowledge queries to get more information about the topic'
)
]
return qa_chain, tools
# Define the agent initializer
def initialize_agent_with_prompt(prompt_template):
qa_chain, tools = build_qa_chain(prompt_template)
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=chat_model,
verbose=False,
max_iteration=5,
early_stopping_method='generate',
memory=conversational_memory
)
return agent
# Define the function to generate answers
def generate_answer(message, choice):
logging.debug(f"generate_answer called with prompt_choice: {choice}")
if choice == "Details":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
elif choice == "Conversational":
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
else:
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
response = agent(message)
# Extract addresses for mapping regardless of the choice
addresses = extract_addresses(response['output'])
return response['output'], addresses
def bot(history, choice):
if not history:
return history
response, addresses = generate_answer(history[-1][0], choice)
history[-1][1] = ""
# Generate audio for the entire response in a separate thread
with concurrent.futures.ThreadPoolExecutor() as executor:
audio_future = executor.submit(generate_audio_elevenlabs, response)
for character in response:
history[-1][1] += character
time.sleep(0.05) # Adjust the speed of text appearance
yield history, None
audio_path = audio_future.result()
yield history, audio_path
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,\sNE\s\d{5})',
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=omaha headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Omaha Today</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
# Voice Control
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
#low_cpu_mem_usage=True,
use_safetensors=True).to(device)
processor = AutoProcessor.from_pretrained(model_id)
# Optimized ASR pipeline
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
base_audio_drive = "/data/audio"
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
return stream, full_text, result
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history,choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' # Replace with your voice ID
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60, # Adjust style for more romantic tone
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
temp_audio_path = f.name
logging.debug(f"Audio saved to {temp_audio_path}")
return temp_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Stable Diffusion setup
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
def generate_image(prompt):
image = pipe(
prompt,
negative_prompt="",
num_inference_steps=28,
guidance_scale=3.0,
).images[0]
return image
# Hardcoded prompt for image generation
hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
def update_images():
image_1 = generate_image(hardcoded_prompt_1)
image_2 = generate_image(hardcoded_prompt_2)
image_3 = generate_image(hardcoded_prompt_3)
return image_1, image_2, image_3
# Database setup
def create_database():
conn = sqlite3.connect('user_credentials.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY,
username TEXT UNIQUE,
password TEXT
)
''')
conn.commit()
conn.close()
def signup_user(username, password):
conn = sqlite3.connect('user_credentials.db')
cursor = conn.cursor()
hashed_password = bcrypt.hash(password)
try:
cursor.execute('INSERT INTO users (username, password) VALUES (?, ?)', (username, hashed_password))
conn.commit()
return "Signup successful!"
except sqlite3.IntegrityError:
return "Username already exists!"
finally:
conn.close()
def login_user(username, password):
conn = sqlite3.connect('user_credentials.db')
cursor = conn.cursor()
cursor.execute('SELECT password FROM users WHERE username = ?', (username,))
result = cursor.fetchone()
conn.close()
if result and bcrypt.verify(password, result[0]):
return "Login successful!"
else:
return "Invalid username or password."
# Initialize database
create_database()
def signup(username, password, password_confirmation):
if password != password_confirmation:
return "Passwords do not match."
return signup_user(username, password)
def login(username, password):
return login_user(username, password)
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
with gr.Row():
with gr.Column():
state = gr.State()
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = chat_msg.then(bot, [chatbot, choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
clear_button = gr.Button("Clear")
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
location_output = gr.HTML()
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
with gr.Column():
weather_output = gr.HTML(value=fetch_local_weather())
news_output = gr.HTML(value=fetch_local_news())
news_output = gr.HTML(value=fetch_local_events())
with gr.Column():
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
refresh_button = gr.Button("Refresh Images")
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
with gr.Row():
with gr.Column():
gr.Markdown("<h2>Signup</h2>")
signup_username = gr.Textbox(placeholder="Username")
signup_password = gr.Textbox(placeholder="Password", type="password")
signup_password_confirmation = gr.Textbox(placeholder="Confirm Password", type="password")
signup_button = gr.Button("Signup")
signup_message = gr.Textbox(interactive=False)
signup_button.click(fn=signup, inputs=[signup_username, signup_password, signup_password_confirmation], outputs=[signup_message])
with gr.Column():
gr.Markdown("<h2>Login</h2>")
login_username = gr.Textbox(placeholder="Username")
login_password = gr.Textbox(placeholder="Password", type="password")
login_button = gr.Button("Login")
login_message = gr.Textbox(interactive=False)
login_button.click(fn=login, inputs=[login_username, login_password], outputs=[login_message])
demo.queue()
demo.launch(share=True)
|