Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,322 @@
|
|
1 |
-
|
2 |
|
|
|
|
|
|
|
3 |
import os
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import subprocess
|
7 |
import gradio as gr
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
-
#
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
|
3 |
+
# Set up logging
|
4 |
+
logging.basicConfig(level=logging.DEBUG)
|
5 |
+
from langchain_openai import OpenAIEmbeddings
|
6 |
import os
|
7 |
+
import re
|
8 |
+
import folium
|
|
|
9 |
import gradio as gr
|
10 |
+
import time
|
11 |
+
import requests
|
12 |
+
from googlemaps import Client as GoogleMapsClient
|
13 |
+
from gtts import gTTS
|
14 |
+
import tempfile
|
15 |
+
import string
|
16 |
+
|
17 |
+
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
18 |
+
|
19 |
+
from pinecone import Pinecone, ServerlessSpec
|
20 |
+
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
21 |
+
|
22 |
+
index_name = "omaha-details"
|
23 |
+
|
24 |
+
from langchain_pinecone import PineconeVectorStore
|
25 |
+
|
26 |
+
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
27 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
28 |
+
|
29 |
+
from langchain_openai import ChatOpenAI
|
30 |
+
from langchain.prompts import PromptTemplate
|
31 |
+
from langchain.chains import RetrievalQA
|
32 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
33 |
+
from langchain.agents import Tool, initialize_agent
|
34 |
+
|
35 |
+
# Build prompt
|
36 |
+
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Use the following pieces of context,
|
37 |
+
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end.
|
38 |
+
If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
|
39 |
+
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
|
40 |
+
event type and description. Always say "It was my pleasure!" at the end of the answer.
|
41 |
+
{context}
|
42 |
+
Question: {question}
|
43 |
+
Helpful Answer:"""
|
44 |
+
|
45 |
+
template2 = """You are an expert guide of Omaha, Nebraska's perennial events.
|
46 |
+
With the context, memory, and message history provided, answer the question in as crisp as possible. Always include the time, date, and
|
47 |
+
event type and description only apart from that don't give any other details. Always say "It was my pleasure!" at the end of the answer.
|
48 |
+
If you don't know the answer, simply say, "Homie, I need to get more data for this," without making up an answer.
|
49 |
+
|
50 |
+
{context}
|
51 |
+
Question: {question}
|
52 |
+
Helpful Answer:"""
|
53 |
+
|
54 |
+
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
|
55 |
+
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
|
56 |
+
|
57 |
+
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'],
|
58 |
+
temperature=0, model='gpt-4o')
|
59 |
+
|
60 |
+
conversational_memory = ConversationBufferWindowMemory(
|
61 |
+
memory_key='chat_history',
|
62 |
+
k=10,
|
63 |
+
return_messages=True
|
64 |
)
|
65 |
|
66 |
+
# Define the retrieval QA chain
|
67 |
+
def build_qa_chain(prompt_template):
|
68 |
+
qa_chain = RetrievalQA.from_chain_type(
|
69 |
+
llm=chat_model,
|
70 |
+
chain_type="stuff",
|
71 |
+
retriever=retriever,
|
72 |
+
chain_type_kwargs={"prompt": prompt_template}
|
73 |
+
)
|
74 |
+
tools = [
|
75 |
+
Tool(
|
76 |
+
name='Knowledge Base',
|
77 |
+
func=qa_chain,
|
78 |
+
description='use this tool when answering general knowledge queries to get more information about the topic'
|
79 |
+
)
|
80 |
+
]
|
81 |
+
return qa_chain, tools
|
82 |
+
|
83 |
+
# Define the agent initializer
|
84 |
+
def initialize_agent_with_prompt(prompt_template):
|
85 |
+
qa_chain, tools = build_qa_chain(prompt_template)
|
86 |
+
agent = initialize_agent(
|
87 |
+
agent='chat-conversational-react-description',
|
88 |
+
tools=tools,
|
89 |
+
llm=chat_model,
|
90 |
+
verbose=False,
|
91 |
+
max_iteration=5,
|
92 |
+
early_stopping_method='generate',
|
93 |
+
memory=conversational_memory
|
94 |
+
)
|
95 |
+
return agent
|
96 |
+
|
97 |
+
# Define the function to generate answers
|
98 |
+
def generate_answer(message, choice):
|
99 |
+
logging.debug(f"generate_answer called with prompt_choice: {choice}")
|
100 |
+
if choice == "Details":
|
101 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
|
102 |
+
elif choice == "Conversational":
|
103 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
|
104 |
+
else:
|
105 |
+
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Details'")
|
106 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
|
107 |
+
|
108 |
+
response = agent(message)
|
109 |
+
return response['output']
|
110 |
+
|
111 |
+
def bot(history, choice):
|
112 |
+
if not history:
|
113 |
+
return history
|
114 |
+
response = generate_answer(history[-1][0], choice)
|
115 |
+
history[-1][1] = ""
|
116 |
+
for character in response:
|
117 |
+
history[-1][1] += character
|
118 |
+
time.sleep(0.05)
|
119 |
+
yield history
|
120 |
+
|
121 |
+
def add_message(history, message):
|
122 |
+
history.append((message, None))
|
123 |
+
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
|
124 |
+
|
125 |
+
def print_like_dislike(x: gr.LikeData):
|
126 |
+
print(x.index, x.value, x.liked)
|
127 |
+
|
128 |
+
# Function to extract addresses from the chatbot's response
|
129 |
+
def extract_addresses(response):
|
130 |
+
address_pattern_1 = r'([A-Z].*,\sOmaha,\sNE\s\d{5})'
|
131 |
+
address_pattern_2 = r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})'
|
132 |
+
address_pattern_3 = r'([A-Z].*,\sNE\s\d{5})'
|
133 |
+
address_pattern_4 = r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})'
|
134 |
+
address_pattern_5 = r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})'
|
135 |
+
address_pattern_6 = r'(\d{2}.*\sStreets)'
|
136 |
+
address_pattern_7 = r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
|
137 |
+
addresses = re.findall(address_pattern_1, response) + re.findall(address_pattern_2, response) + \
|
138 |
+
re.findall(address_pattern_3, response) + re.findall(address_pattern_4, response) + \
|
139 |
+
re.findall(address_pattern_5, response) + re.findall(address_pattern_6, response) + \
|
140 |
+
re.findall(address_pattern_7, response)
|
141 |
+
return addresses
|
142 |
+
|
143 |
+
# Store all found addresses
|
144 |
+
all_addresses = []
|
145 |
+
|
146 |
+
# Map generation function using Google Maps Geocoding API
|
147 |
+
def generate_map(location_names):
|
148 |
+
global all_addresses
|
149 |
+
all_addresses.extend(location_names)
|
150 |
+
|
151 |
+
api_key = os.environ['GOOGLEMAPS_API_KEY']
|
152 |
+
gmaps = GoogleMapsClient(key=api_key)
|
153 |
+
|
154 |
+
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
|
155 |
+
|
156 |
+
for location_name in all_addresses:
|
157 |
+
geocode_result = gmaps.geocode(location_name)
|
158 |
+
if geocode_result:
|
159 |
+
location = geocode_result[0]['geometry']['location']
|
160 |
+
folium.Marker(
|
161 |
+
[location['lat'], location['lng']],
|
162 |
+
tooltip=f"{geocode_result[0]['formatted_address']}"
|
163 |
+
).add_to(m)
|
164 |
+
|
165 |
+
map_html = m._repr_html_()
|
166 |
+
return map_html
|
167 |
+
|
168 |
+
# Function to fetch local news
|
169 |
+
def fetch_local_news():
|
170 |
+
api_key = os.environ['SERP_API']
|
171 |
+
url = f'https://serpapi.com/search.json?engine=google_news&q=ohama headline&api_key={api_key}'
|
172 |
+
|
173 |
+
response = requests.get(url)
|
174 |
+
if response.status_code == 200:
|
175 |
+
results = response.json().get("news_results", [])
|
176 |
+
news_html = "<h2>Omaha Today Headline </h2>"
|
177 |
+
for index, result in enumerate(results[:10]):
|
178 |
+
title = result.get("title", "No title")
|
179 |
+
link = result.get("link", "#")
|
180 |
+
snippet = result.get("snippet", "")
|
181 |
+
news_html += f"<p>{index + 1}. <a href='{link}' target='_blank'>{title}</a><br>{snippet}</p>"
|
182 |
+
return news_html
|
183 |
+
else:
|
184 |
+
return "<p>Failed to fetch local news</p>"
|
185 |
+
|
186 |
+
# Function to fetch local events
|
187 |
+
def fetch_local_events():
|
188 |
+
api_key = os.environ['SERP_API']
|
189 |
+
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
|
190 |
+
|
191 |
+
response = requests.get(url)
|
192 |
+
if response.status_code == 200:
|
193 |
+
events_results = response.json().get("events_results", [])
|
194 |
+
events_text = "<h2>Local Events </h2>"
|
195 |
+
for index, event in enumerate(events_results):
|
196 |
+
title = event.get("title", "No title")
|
197 |
+
date = event.get("date", "No date")
|
198 |
+
location = event.get("address", "No location")
|
199 |
+
link = event.get("link", "#")
|
200 |
+
events_text += f"<p>{index + 1}. {title}<br> Date: {date}<br> Location: {location}<br> <a href='{link}' target='_blank'>Link :</a> <br>"
|
201 |
+
return events_text
|
202 |
+
else:
|
203 |
+
return "Failed to fetch local events"
|
204 |
+
|
205 |
+
# Function to fetch local weather
|
206 |
+
def fetch_local_weather():
|
207 |
+
try:
|
208 |
+
api_key = os.environ['WEATHER_API']
|
209 |
+
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/omaha?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
|
210 |
+
response = requests.get(url)
|
211 |
+
response.raise_for_status()
|
212 |
+
jsonData = response.json()
|
213 |
+
|
214 |
+
current_conditions = jsonData.get("currentConditions", {})
|
215 |
+
temp = current_conditions.get("temp", "N/A")
|
216 |
+
condition = current_conditions.get("conditions", "N/A")
|
217 |
+
humidity = current_conditions.get("humidity", "N/A")
|
218 |
+
|
219 |
+
weather_html = f"<h2>Local Weather</h2>"
|
220 |
+
weather_html += f"<p>Temperature: {temp}°C</p>"
|
221 |
+
weather_html += f"<p>Condition: {condition}</p>"
|
222 |
+
weather_html += f"<p>Humidity: {humidity}%</p>"
|
223 |
+
|
224 |
+
return weather_html
|
225 |
+
except requests.exceptions.RequestException as e:
|
226 |
+
return f"<p>Failed to fetch local weather: {e}</p>"
|
227 |
+
|
228 |
+
# Voice Control
|
229 |
+
import numpy as np
|
230 |
+
import torch
|
231 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
232 |
+
|
233 |
+
model_id = 'openai/whisper-large-v3'
|
234 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
235 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
236 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
|
237 |
+
#low_cpu_mem_usage=True,
|
238 |
+
use_safetensors=True).to(device)
|
239 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
240 |
+
|
241 |
+
# Optimized ASR pipeline
|
242 |
+
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
243 |
+
|
244 |
+
base_audio_drive = "/data/audio"
|
245 |
+
|
246 |
+
import numpy as np
|
247 |
+
|
248 |
+
def transcribe_function(stream, new_chunk):
|
249 |
+
try:
|
250 |
+
sr, y = new_chunk[0], new_chunk[1]
|
251 |
+
except TypeError:
|
252 |
+
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
253 |
+
return stream, "", None
|
254 |
+
|
255 |
+
y = y.astype(np.float32) / np.max(np.abs(y))
|
256 |
+
|
257 |
+
if stream is not None:
|
258 |
+
stream = np.concatenate([stream, y])
|
259 |
+
else:
|
260 |
+
stream = y
|
261 |
+
|
262 |
+
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
263 |
+
|
264 |
+
full_text = result.get("text", "")
|
265 |
+
|
266 |
+
return stream, full_text, result
|
267 |
+
|
268 |
+
# Map Retrieval Function for location finder
|
269 |
+
def update_map_with_response(history):
|
270 |
+
if not history:
|
271 |
+
return ""
|
272 |
+
response = history[-1][1]
|
273 |
+
addresses = extract_addresses(response)
|
274 |
+
return generate_map(addresses)
|
275 |
+
|
276 |
+
def clear_textbox():
|
277 |
+
return ""
|
278 |
+
|
279 |
+
# Gradio Blocks interface
|
280 |
+
with gr.Blocks(theme='rawrsor1/Everforest') as demo:
|
281 |
+
with gr.Row():
|
282 |
+
with gr.Column():
|
283 |
+
chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False)
|
284 |
+
|
285 |
+
with gr.Column():
|
286 |
+
weather_output = gr.HTML(value=fetch_local_weather())
|
287 |
+
|
288 |
+
with gr.Column():
|
289 |
+
news_output = gr.HTML(value=fetch_local_news())
|
290 |
+
|
291 |
+
def setup_ui():
|
292 |
+
state = gr.State()
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
gr.Markdown("Choose the prompt")
|
296 |
+
choice = gr.Radio(label="Choose a prompt", choices=["Details", "Conversational"], value="Details")
|
297 |
+
|
298 |
+
with gr.Column(): # Larger scale for the right column
|
299 |
+
gr.Markdown("Enter the query / Voice Output")
|
300 |
+
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="Transcription")
|
301 |
+
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
302 |
+
bot_msg = chat_msg.then(bot, [chatbot, choice], chatbot, api_name="bot_response")
|
303 |
+
bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False), None, [chat_input])
|
304 |
+
chatbot.like(print_like_dislike, None, None)
|
305 |
+
clear_button = gr.Button("Clear")
|
306 |
+
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
|
307 |
+
|
308 |
+
with gr.Column(): # Smaller scale for the left column
|
309 |
+
gr.Markdown("Stream your Voice")
|
310 |
+
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
|
311 |
+
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
|
312 |
+
|
313 |
+
with gr.Row():
|
314 |
+
with gr.Column():
|
315 |
+
gr.Markdown("Locate the Events")
|
316 |
+
location_output = gr.HTML()
|
317 |
+
bot_msg.then(update_map_with_response, chatbot, location_output)
|
318 |
+
|
319 |
+
setup_ui()
|
320 |
+
|
321 |
+
demo.queue()
|
322 |
+
demo.launch(share=True)
|