Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -877,11 +877,6 @@
|
|
877 |
|
878 |
|
879 |
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
import os
|
886 |
import re
|
887 |
import time
|
@@ -891,7 +886,6 @@ import folium
|
|
891 |
import gradio as gr
|
892 |
import tempfile
|
893 |
import torch
|
894 |
-
import sqlite3
|
895 |
from datetime import datetime
|
896 |
import numpy as np
|
897 |
from gtts import gTTS
|
@@ -899,8 +893,7 @@ from googlemaps import Client as GoogleMapsClient
|
|
899 |
from diffusers import StableDiffusion3Pipeline
|
900 |
import concurrent.futures
|
901 |
from PIL import Image
|
902 |
-
|
903 |
-
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
904 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
905 |
from langchain_pinecone import PineconeVectorStore
|
906 |
from langchain.prompts import PromptTemplate
|
@@ -909,63 +902,22 @@ from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
|
909 |
from langchain.agents import Tool, initialize_agent
|
910 |
from huggingface_hub import login
|
911 |
|
912 |
-
|
913 |
-
|
914 |
-
conn = sqlite3.connect("user_data.db")
|
915 |
-
cursor = conn.cursor()
|
916 |
-
cursor.execute('''
|
917 |
-
CREATE TABLE IF NOT EXISTS users (
|
918 |
-
id INTEGER PRIMARY KEY,
|
919 |
-
username TEXT UNIQUE NOT NULL,
|
920 |
-
password TEXT NOT NULL,
|
921 |
-
created_at TEXT NOT NULL
|
922 |
-
)
|
923 |
-
''')
|
924 |
-
conn.commit()
|
925 |
-
conn.close()
|
926 |
-
|
927 |
-
init_db()
|
928 |
-
|
929 |
-
def hash_password(password):
|
930 |
-
return sha256(password.encode()).hexdigest()
|
931 |
-
|
932 |
-
def verify_password(stored_password, provided_password):
|
933 |
-
return stored_password == sha256(provided_password.encode()).hexdigest()
|
934 |
-
|
935 |
-
def create_account(username, password):
|
936 |
-
conn = sqlite3.connect("user_data.db")
|
937 |
-
cursor = conn.cursor()
|
938 |
-
try:
|
939 |
-
cursor.execute('''
|
940 |
-
INSERT INTO users (username, password, created_at) VALUES (?, ?, ?)
|
941 |
-
''', (username, hash_password(password), datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
|
942 |
-
conn.commit()
|
943 |
-
conn.close()
|
944 |
-
return "Account created successfully!"
|
945 |
-
except sqlite3.IntegrityError:
|
946 |
-
conn.close()
|
947 |
-
return "Username already exists!"
|
948 |
-
|
949 |
-
def login_user(username, password):
|
950 |
-
conn = sqlite3.connect("user_data.db")
|
951 |
-
cursor = conn.cursor()
|
952 |
-
cursor.execute('''
|
953 |
-
SELECT password FROM users WHERE username = ?
|
954 |
-
''', (username,))
|
955 |
-
stored_password = cursor.fetchone()
|
956 |
-
conn.close()
|
957 |
-
if stored_password and verify_password(stored_password[0], password):
|
958 |
-
return True
|
959 |
-
else:
|
960 |
-
return False
|
961 |
|
962 |
# Check if the token is already set in the environment variables
|
963 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
964 |
if hf_token is None:
|
|
|
965 |
print("Please set your Hugging Face token in the environment variables.")
|
966 |
else:
|
|
|
967 |
login(token=hf_token)
|
968 |
|
|
|
|
|
|
|
969 |
# Set up logging
|
970 |
logging.basicConfig(level=logging.DEBUG)
|
971 |
|
@@ -994,128 +946,13 @@ def get_current_time_and_date():
|
|
994 |
now = datetime.now()
|
995 |
return now.strftime("%Y-%m-%d %H:%M:%S")
|
996 |
|
|
|
997 |
current_time_and_date = get_current_time_and_date()
|
998 |
|
999 |
-
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on weather being a sunny bright day and the today's date is 20th june 2024, use the following pieces of context,
|
1000 |
-
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
|
1001 |
-
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
|
1002 |
-
event type and description. Always say "It was my pleasure!" at the end of the answer.
|
1003 |
-
{context}
|
1004 |
-
Question: {question}
|
1005 |
-
Helpful Answer:"""
|
1006 |
-
|
1007 |
-
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and today's date is 20th june 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
|
1008 |
-
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
|
1009 |
-
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
|
1010 |
-
{context}
|
1011 |
-
Question: {question}
|
1012 |
-
Helpful Answer:"""
|
1013 |
-
|
1014 |
-
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
|
1015 |
-
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
|
1016 |
-
|
1017 |
-
def build_qa_chain(prompt_template):
|
1018 |
-
qa_chain = RetrievalQA.from_chain_type(
|
1019 |
-
llm=chat_model,
|
1020 |
-
chain_type="stuff",
|
1021 |
-
retriever=retriever,
|
1022 |
-
chain_type_kwargs={"prompt": prompt_template}
|
1023 |
-
)
|
1024 |
-
tools = [
|
1025 |
-
Tool(
|
1026 |
-
name='Knowledge Base',
|
1027 |
-
func=qa_chain,
|
1028 |
-
description='Use this tool when answering general knowledge queries to get more information about the topic'
|
1029 |
-
)
|
1030 |
-
]
|
1031 |
-
return qa_chain, tools
|
1032 |
-
|
1033 |
-
def initialize_agent_with_prompt(prompt_template):
|
1034 |
-
qa_chain, tools = build_qa_chain(prompt_template)
|
1035 |
-
agent = initialize_agent(
|
1036 |
-
agent='chat-conversational-react-description',
|
1037 |
-
tools=tools,
|
1038 |
-
llm=chat_model,
|
1039 |
-
verbose=False,
|
1040 |
-
max_iteration=5,
|
1041 |
-
early_stopping_method='generate',
|
1042 |
-
memory=conversational_memory
|
1043 |
-
)
|
1044 |
-
return agent
|
1045 |
-
|
1046 |
-
def generate_answer(message, choice):
|
1047 |
-
logging.debug(f"generate_answer called with prompt_choice: {choice}")
|
1048 |
-
if choice == "Details":
|
1049 |
-
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
|
1050 |
-
elif choice == "Conversational":
|
1051 |
-
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
|
1052 |
-
else:
|
1053 |
-
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
|
1054 |
-
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
|
1055 |
-
response = agent(message)
|
1056 |
-
addresses = extract_addresses(response['output'])
|
1057 |
-
return response['output'], addresses
|
1058 |
-
|
1059 |
-
def bot(history, choice):
|
1060 |
-
if not history:
|
1061 |
-
return history
|
1062 |
-
response, addresses = generate_answer(history[-1][0], choice)
|
1063 |
-
history[-1][1] = ""
|
1064 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
1065 |
-
audio_future = executor.submit(generate_audio_elevenlabs, response)
|
1066 |
-
for character in response:
|
1067 |
-
history[-1][1] += character
|
1068 |
-
time.sleep(0.05)
|
1069 |
-
yield history, None
|
1070 |
-
audio_path = audio_future.result()
|
1071 |
-
yield history, audio_path
|
1072 |
-
|
1073 |
-
def add_message(history, message):
|
1074 |
-
history.append((message, None))
|
1075 |
-
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
|
1076 |
-
|
1077 |
-
def print_like_dislike(x: gr.LikeData):
|
1078 |
-
print(x.index, x.value, x.liked)
|
1079 |
-
|
1080 |
-
def extract_addresses(response):
|
1081 |
-
if not isinstance(response, str):
|
1082 |
-
response = str(response)
|
1083 |
-
address_patterns = [
|
1084 |
-
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
|
1085 |
-
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
|
1086 |
-
r'([A-Z].*,\sNE\s\d{5})',
|
1087 |
-
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
|
1088 |
-
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
|
1089 |
-
r'(\d{2}.*\sStreets)',
|
1090 |
-
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
|
1091 |
-
]
|
1092 |
-
addresses = []
|
1093 |
-
for pattern in address_patterns:
|
1094 |
-
addresses.extend(re.findall(pattern, response))
|
1095 |
-
return addresses
|
1096 |
-
|
1097 |
-
all_addresses = []
|
1098 |
-
|
1099 |
-
def generate_map(location_names):
|
1100 |
-
global all_addresses
|
1101 |
-
all_addresses.extend(location_names)
|
1102 |
-
api_key = os.environ['GOOGLEMAPS_API_KEY']
|
1103 |
-
gmaps = GoogleMapsClient(key=api_key)
|
1104 |
-
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
|
1105 |
-
for location_name in all_addresses:
|
1106 |
-
geocode_result = gmaps.geocode(location_name)
|
1107 |
-
if geocode_result:
|
1108 |
-
location = geocode_result[0]['geometry']['location']
|
1109 |
-
folium.Marker(
|
1110 |
-
[location['lat'], location['lng']],
|
1111 |
-
tooltip=f"{geocode_result[0]['formatted_address']}"
|
1112 |
-
).add_to(m)
|
1113 |
-
map_html = m._repr_html_()
|
1114 |
-
return map_html
|
1115 |
-
|
1116 |
def fetch_local_events():
|
1117 |
api_key = os.environ['SERP_API']
|
1118 |
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
|
|
|
1119 |
response = requests.get(url)
|
1120 |
if response.status_code == 200:
|
1121 |
events_results = response.json().get("events_results", [])
|
@@ -1160,14 +997,18 @@ def fetch_local_weather():
|
|
1160 |
response = requests.get(url)
|
1161 |
response.raise_for_status()
|
1162 |
jsonData = response.json()
|
|
|
1163 |
current_conditions = jsonData.get("currentConditions", {})
|
1164 |
temp_celsius = current_conditions.get("temp", "N/A")
|
|
|
1165 |
if temp_celsius != "N/A":
|
1166 |
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
|
1167 |
else:
|
1168 |
temp_fahrenheit = "N/A"
|
|
|
1169 |
condition = current_conditions.get("conditions", "N/A")
|
1170 |
humidity = current_conditions.get("humidity", "N/A")
|
|
|
1171 |
weather_html = f"""
|
1172 |
<div class="weather-theme">
|
1173 |
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
|
@@ -1308,30 +1149,45 @@ def fetch_local_news():
|
|
1308 |
else:
|
1309 |
return "<p>Failed to fetch local news</p>"
|
1310 |
|
|
|
|
|
|
|
|
|
|
|
1311 |
model_id = 'openai/whisper-large-v3'
|
1312 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
1313 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
1314 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
|
1315 |
use_safetensors=True).to(device)
|
1316 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
|
|
1317 |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
1318 |
|
1319 |
base_audio_drive = "/data/audio"
|
1320 |
|
|
|
|
|
1321 |
def transcribe_function(stream, new_chunk):
|
1322 |
try:
|
1323 |
sr, y = new_chunk[0], new_chunk[1]
|
1324 |
except TypeError:
|
1325 |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
1326 |
return stream, "", None
|
|
|
1327 |
y = y.astype(np.float32) / np.max(np.abs(y))
|
|
|
1328 |
if stream is not None:
|
1329 |
stream = np.concatenate([stream, y])
|
1330 |
else:
|
1331 |
stream = y
|
|
|
1332 |
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
|
|
1333 |
full_text = result.get("text", "")
|
|
|
1334 |
return stream, full_text, result
|
|
|
1335 |
|
1336 |
def update_map_with_response(history):
|
1337 |
if not history:
|
@@ -1341,17 +1197,17 @@ def update_map_with_response(history):
|
|
1341 |
return generate_map(addresses)
|
1342 |
|
1343 |
def clear_textbox():
|
1344 |
-
return ""
|
1345 |
|
1346 |
-
def show_map_if_details(history,
|
1347 |
if choice in ["Details", "Conversational"]:
|
1348 |
return gr.update(visible=True), update_map_with_response(history)
|
1349 |
else:
|
1350 |
-
return gr.update(visible
|
1351 |
|
1352 |
def generate_audio_elevenlabs(text):
|
1353 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
1354 |
-
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
|
1355 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
1356 |
headers = {
|
1357 |
"Accept": "application/json",
|
@@ -1363,7 +1219,7 @@ def generate_audio_elevenlabs(text):
|
|
1363 |
"voice_settings": {
|
1364 |
"stability": 1.0,
|
1365 |
"similarity_boost": 0.0,
|
1366 |
-
"style": 0.60,
|
1367 |
"use_speaker_boost": False
|
1368 |
}
|
1369 |
}
|
@@ -1379,6 +1235,7 @@ def generate_audio_elevenlabs(text):
|
|
1379 |
logging.error(f"Error generating audio: {response.text}")
|
1380 |
return None
|
1381 |
|
|
|
1382 |
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
1383 |
pipe = pipe.to("cuda")
|
1384 |
|
@@ -1391,7 +1248,8 @@ def generate_image(prompt):
|
|
1391 |
).images[0]
|
1392 |
return image
|
1393 |
|
1394 |
-
|
|
|
1395 |
hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
|
1396 |
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
|
1397 |
|
@@ -1401,39 +1259,204 @@ def update_images():
|
|
1401 |
image_3 = generate_image(hardcoded_prompt_3)
|
1402 |
return image_1, image_2, image_3
|
1403 |
|
1404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1405 |
|
1406 |
-
def
|
1407 |
-
global authenticated
|
1408 |
if login_user(username, password):
|
1409 |
-
|
1410 |
-
return "Login successful! Redirecting...", gr.update(visible=False), gr.update(visible=True)
|
1411 |
else:
|
1412 |
-
return "
|
1413 |
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
|
|
|
|
|
|
|
|
|
|
1424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1425 |
with gr.Column():
|
1426 |
-
gr.
|
1427 |
-
|
1428 |
-
password_create = gr.Textbox(label="Password", type="password")
|
1429 |
-
create_button = gr.Button("Create Account")
|
1430 |
-
create_output = gr.Markdown()
|
1431 |
-
create_button.click(fn=create_account, inputs=[username_create, password_create], outputs=create_output)
|
1432 |
-
|
1433 |
-
with gr.Row(visible=authenticated) as main_interface:
|
1434 |
-
with gr.Column():
|
1435 |
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
|
1436 |
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
|
|
|
1437 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
1438 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
|
1439 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
@@ -1442,24 +1465,32 @@ with gr.Blocks() as demo:
|
|
1442 |
chatbot.like(print_like_dislike, None, None)
|
1443 |
clear_button = gr.Button("Clear")
|
1444 |
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
|
|
|
|
|
1445 |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
|
1446 |
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
|
|
|
1447 |
gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
|
1448 |
location_output = gr.HTML()
|
1449 |
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
|
1450 |
-
|
1451 |
with gr.Column():
|
1452 |
weather_output = gr.HTML(value=fetch_local_weather())
|
1453 |
news_output = gr.HTML(value=fetch_local_news())
|
1454 |
-
|
1455 |
-
|
1456 |
with gr.Column():
|
1457 |
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
|
1458 |
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
|
1459 |
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
|
|
1460 |
refresh_button = gr.Button("Refresh Images")
|
1461 |
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
|
1462 |
|
1463 |
demo.queue()
|
1464 |
demo.launch(share=True)
|
1465 |
|
|
|
|
|
|
|
|
|
|
877 |
|
878 |
|
879 |
|
|
|
|
|
|
|
|
|
|
|
880 |
import os
|
881 |
import re
|
882 |
import time
|
|
|
886 |
import gradio as gr
|
887 |
import tempfile
|
888 |
import torch
|
|
|
889 |
from datetime import datetime
|
890 |
import numpy as np
|
891 |
from gtts import gTTS
|
|
|
893 |
from diffusers import StableDiffusion3Pipeline
|
894 |
import concurrent.futures
|
895 |
from PIL import Image
|
896 |
+
|
|
|
897 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
898 |
from langchain_pinecone import PineconeVectorStore
|
899 |
from langchain.prompts import PromptTemplate
|
|
|
902 |
from langchain.agents import Tool, initialize_agent
|
903 |
from huggingface_hub import login
|
904 |
|
905 |
+
import sqlite3
|
906 |
+
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
907 |
|
908 |
# Check if the token is already set in the environment variables
|
909 |
hf_token = os.getenv("HF_TOKEN")
|
910 |
+
|
911 |
if hf_token is None:
|
912 |
+
# If the token is not set, prompt for it (this should be done securely)
|
913 |
print("Please set your Hugging Face token in the environment variables.")
|
914 |
else:
|
915 |
+
# Login using the token
|
916 |
login(token=hf_token)
|
917 |
|
918 |
+
# Your application logic goes here
|
919 |
+
print("Logged in successfully to Hugging Face Hub!")
|
920 |
+
|
921 |
# Set up logging
|
922 |
logging.basicConfig(level=logging.DEBUG)
|
923 |
|
|
|
946 |
now = datetime.now()
|
947 |
return now.strftime("%Y-%m-%d %H:%M:%S")
|
948 |
|
949 |
+
# Example usage
|
950 |
current_time_and_date = get_current_time_and_date()
|
951 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
952 |
def fetch_local_events():
|
953 |
api_key = os.environ['SERP_API']
|
954 |
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Omaha&hl=en&gl=us&api_key={api_key}'
|
955 |
+
|
956 |
response = requests.get(url)
|
957 |
if response.status_code == 200:
|
958 |
events_results = response.json().get("events_results", [])
|
|
|
997 |
response = requests.get(url)
|
998 |
response.raise_for_status()
|
999 |
jsonData = response.json()
|
1000 |
+
|
1001 |
current_conditions = jsonData.get("currentConditions", {})
|
1002 |
temp_celsius = current_conditions.get("temp", "N/A")
|
1003 |
+
|
1004 |
if temp_celsius != "N/A":
|
1005 |
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
|
1006 |
else:
|
1007 |
temp_fahrenheit = "N/A"
|
1008 |
+
|
1009 |
condition = current_conditions.get("conditions", "N/A")
|
1010 |
humidity = current_conditions.get("humidity", "N/A")
|
1011 |
+
|
1012 |
weather_html = f"""
|
1013 |
<div class="weather-theme">
|
1014 |
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
|
|
|
1149 |
else:
|
1150 |
return "<p>Failed to fetch local news</p>"
|
1151 |
|
1152 |
+
# Voice Control
|
1153 |
+
import numpy as np
|
1154 |
+
import torch
|
1155 |
+
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
1156 |
+
|
1157 |
model_id = 'openai/whisper-large-v3'
|
1158 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
1159 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
1160 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype,
|
1161 |
use_safetensors=True).to(device)
|
1162 |
processor = AutoProcessor.from_pretrained(model_id)
|
1163 |
+
|
1164 |
+
# Optimized ASR pipeline
|
1165 |
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
1166 |
|
1167 |
base_audio_drive = "/data/audio"
|
1168 |
|
1169 |
+
import numpy as np
|
1170 |
+
|
1171 |
def transcribe_function(stream, new_chunk):
|
1172 |
try:
|
1173 |
sr, y = new_chunk[0], new_chunk[1]
|
1174 |
except TypeError:
|
1175 |
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
1176 |
return stream, "", None
|
1177 |
+
|
1178 |
y = y.astype(np.float32) / np.max(np.abs(y))
|
1179 |
+
|
1180 |
if stream is not None:
|
1181 |
stream = np.concatenate([stream, y])
|
1182 |
else:
|
1183 |
stream = y
|
1184 |
+
|
1185 |
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
|
1186 |
+
|
1187 |
full_text = result.get("text", "")
|
1188 |
+
|
1189 |
return stream, full_text, result
|
1190 |
+
|
1191 |
|
1192 |
def update_map_with_response(history):
|
1193 |
if not history:
|
|
|
1197 |
return generate_map(addresses)
|
1198 |
|
1199 |
def clear_textbox():
|
1200 |
+
return ""
|
1201 |
|
1202 |
+
def show_map_if_details(history,choice):
|
1203 |
if choice in ["Details", "Conversational"]:
|
1204 |
return gr.update(visible=True), update_map_with_response(history)
|
1205 |
else:
|
1206 |
+
return gr.update(visible(False), "")
|
1207 |
|
1208 |
def generate_audio_elevenlabs(text):
|
1209 |
XI_API_KEY = os.environ['ELEVENLABS_API']
|
1210 |
+
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9' # Replace with your voice ID
|
1211 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
1212 |
headers = {
|
1213 |
"Accept": "application/json",
|
|
|
1219 |
"voice_settings": {
|
1220 |
"stability": 1.0,
|
1221 |
"similarity_boost": 0.0,
|
1222 |
+
"style": 0.60, # Adjust style for more romantic tone
|
1223 |
"use_speaker_boost": False
|
1224 |
}
|
1225 |
}
|
|
|
1235 |
logging.error(f"Error generating audio: {response.text}")
|
1236 |
return None
|
1237 |
|
1238 |
+
# Stable Diffusion setup
|
1239 |
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
1240 |
pipe = pipe.to("cuda")
|
1241 |
|
|
|
1248 |
).images[0]
|
1249 |
return image
|
1250 |
|
1251 |
+
# Hardcoded prompt for image generation
|
1252 |
+
hardcoded_prompt_1="Give a high quality photograph of a great looking red 2026 toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
|
1253 |
hardcoded_prompt_2="A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
|
1254 |
hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
|
1255 |
|
|
|
1259 |
image_3 = generate_image(hardcoded_prompt_3)
|
1260 |
return image_1, image_2, image_3
|
1261 |
|
1262 |
+
# Initialize database and create user table if not exists
|
1263 |
+
def init_db():
|
1264 |
+
conn = sqlite3.connect('user_data.db')
|
1265 |
+
c = conn.cursor()
|
1266 |
+
c.execute('''CREATE TABLE IF NOT EXISTS users
|
1267 |
+
(username TEXT PRIMARY KEY, password TEXT)''')
|
1268 |
+
conn.commit()
|
1269 |
+
conn.close()
|
1270 |
+
|
1271 |
+
init_db()
|
1272 |
+
|
1273 |
+
def hash_password(password):
|
1274 |
+
return hashlib.sha256(password.encode()).hexdigest()
|
1275 |
+
|
1276 |
+
def signup_user(username, password):
|
1277 |
+
conn = sqlite3.connect('user_data.db')
|
1278 |
+
c = conn.cursor()
|
1279 |
+
try:
|
1280 |
+
c.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hash_password(password)))
|
1281 |
+
conn.commit()
|
1282 |
+
return True
|
1283 |
+
except sqlite3.IntegrityError:
|
1284 |
+
return False
|
1285 |
+
finally:
|
1286 |
+
conn.close()
|
1287 |
+
|
1288 |
+
def login_user(username, password):
|
1289 |
+
conn = sqlite3.connect('user_data.db')
|
1290 |
+
c = conn.cursor()
|
1291 |
+
c.execute("SELECT * FROM users WHERE username=? AND password=?", (username, hash_password(password)))
|
1292 |
+
user = c.fetchone()
|
1293 |
+
conn.close()
|
1294 |
+
return user is not None
|
1295 |
+
|
1296 |
+
def handle_signup(username, password):
|
1297 |
+
if '@mangoes.ai' not in username:
|
1298 |
+
return "Username must include '@mangoes.ai'."
|
1299 |
+
if signup_user(username, password):
|
1300 |
+
return "Signup successful! You can now log in."
|
1301 |
+
else:
|
1302 |
+
return "Signup failed! Username may already be taken."
|
1303 |
|
1304 |
+
def handle_login(username, password):
|
|
|
1305 |
if login_user(username, password):
|
1306 |
+
return "Login successful!"
|
|
|
1307 |
else:
|
1308 |
+
return "Login failed! Please check your credentials."
|
1309 |
|
1310 |
+
def build_qa_chain(prompt_template):
|
1311 |
+
qa_chain = RetrievalQA.from_chain_type(
|
1312 |
+
llm=chat_model,
|
1313 |
+
chain_type="stuff",
|
1314 |
+
retriever=retriever,
|
1315 |
+
chain_type_kwargs={"prompt": prompt_template}
|
1316 |
+
)
|
1317 |
+
tools = [
|
1318 |
+
Tool(
|
1319 |
+
name='Knowledge Base',
|
1320 |
+
func=qa_chain,
|
1321 |
+
description='Use this tool when answering general knowledge queries to get more information about the topic'
|
1322 |
+
)
|
1323 |
+
]
|
1324 |
+
return qa_chain, tools
|
1325 |
|
1326 |
+
def initialize_agent_with_prompt(prompt_template):
|
1327 |
+
qa_chain, tools = build_qa_chain(prompt_template)
|
1328 |
+
agent = initialize_agent(
|
1329 |
+
agent='chat-conversational-react-description',
|
1330 |
+
tools=tools,
|
1331 |
+
llm=chat_model,
|
1332 |
+
verbose=False,
|
1333 |
+
max_iteration=5,
|
1334 |
+
early_stopping_method='generate',
|
1335 |
+
memory=conversational_memory
|
1336 |
+
)
|
1337 |
+
return agent
|
1338 |
+
|
1339 |
+
def generate_answer(message, choice):
|
1340 |
+
logging.debug(f"generate_answer called with prompt_choice: {choice}")
|
1341 |
+
|
1342 |
+
if choice == "Details":
|
1343 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
|
1344 |
+
elif choice == "Conversational":
|
1345 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
|
1346 |
+
else:
|
1347 |
+
logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
|
1348 |
+
agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
|
1349 |
+
response = agent(message)
|
1350 |
+
|
1351 |
+
# Extract addresses for mapping regardless of the choice
|
1352 |
+
addresses = extract_addresses(response['output'])
|
1353 |
+
return response['output'], addresses
|
1354 |
+
|
1355 |
+
def bot(history, choice):
|
1356 |
+
if not history:
|
1357 |
+
return history
|
1358 |
+
response, addresses = generate_answer(history[-1][0], choice)
|
1359 |
+
history[-1][1] = ""
|
1360 |
+
|
1361 |
+
# Generate audio for the entire response in a separate thread
|
1362 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
1363 |
+
audio_future = executor.submit(generate_audio_elevenlabs, response)
|
1364 |
+
|
1365 |
+
for character in response:
|
1366 |
+
history[-1][1] += character
|
1367 |
+
time.sleep(0.05) # Adjust the speed of text appearance
|
1368 |
+
yield history, None
|
1369 |
+
|
1370 |
+
audio_path = audio_future.result()
|
1371 |
+
yield history, audio_path
|
1372 |
+
|
1373 |
+
def add_message(history, message):
|
1374 |
+
history.append((message, None))
|
1375 |
+
return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
|
1376 |
+
|
1377 |
+
def print_like_dislike(x: gr.LikeData):
|
1378 |
+
print(x.index, x.value, x.liked)
|
1379 |
+
|
1380 |
+
def extract_addresses(response):
|
1381 |
+
if not isinstance(response, str):
|
1382 |
+
response = str(response)
|
1383 |
+
address_patterns = [
|
1384 |
+
r'([A-Z].*,\sOmaha,\sNE\s\d{5})',
|
1385 |
+
r'(\d{4}\s.*,\sOmaha,\sNE\s\d{5})',
|
1386 |
+
r'([A-Z].*,\sNE\s\d{5})',
|
1387 |
+
r'([A-Z].*,.*\sSt,\sOmaha,\sNE\s\d{5})',
|
1388 |
+
r'([A-Z].*,.*\sStreets,\sOmaha,\sNE\s\d{5})',
|
1389 |
+
r'(\d{2}.*\sStreets)',
|
1390 |
+
r'([A-Z].*\s\d{2},\sOmaha,\sNE\s\d{5})'
|
1391 |
+
]
|
1392 |
+
addresses = []
|
1393 |
+
for pattern in address_patterns:
|
1394 |
+
addresses.extend(re.findall(pattern, response))
|
1395 |
+
return addresses
|
1396 |
+
|
1397 |
+
all_addresses = []
|
1398 |
+
|
1399 |
+
def generate_map(location_names):
|
1400 |
+
global all_addresses
|
1401 |
+
all_addresses.extend(location_names)
|
1402 |
+
|
1403 |
+
api_key = os.environ['GOOGLEMAPS_API_KEY']
|
1404 |
+
gmaps = GoogleMapsClient(key=api_key)
|
1405 |
+
|
1406 |
+
m = folium.Map(location=[41.2565, -95.9345], zoom_start=12)
|
1407 |
+
|
1408 |
+
for location_name in all_addresses:
|
1409 |
+
geocode_result = gmaps.geocode(location_name)
|
1410 |
+
if geocode_result:
|
1411 |
+
location = geocode_result[0]['geometry']['location']
|
1412 |
+
folium.Marker(
|
1413 |
+
[location['lat'], location['lng']],
|
1414 |
+
tooltip=f"{geocode_result[0]['formatted_address']}"
|
1415 |
+
).add_to(m)
|
1416 |
+
|
1417 |
+
map_html = m._repr_html_()
|
1418 |
+
return map_html
|
1419 |
+
|
1420 |
+
template1 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on weather being a sunny bright day and the today's date is 20th june 2024, use the following pieces of context,
|
1421 |
+
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
|
1422 |
+
Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
|
1423 |
+
event type and description. Always say "It was my pleasure!" at the end of the answer.
|
1424 |
+
{context}
|
1425 |
+
Question: {question}
|
1426 |
+
Helpful Answer:"""
|
1427 |
+
|
1428 |
+
template2 = """You are an expert concierge who is helpful and a renowned guide for Omaha, Nebraska. Based on today's weather being a sunny bright day and today's date is 20th june 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
|
1429 |
+
memory, and message history, along with your knowledge of perennial events in Omaha, Nebraska, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
|
1430 |
+
Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
|
1431 |
+
{context}
|
1432 |
+
Question: {question}
|
1433 |
+
Helpful Answer:"""
|
1434 |
+
|
1435 |
+
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
|
1436 |
+
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
|
1437 |
+
|
1438 |
+
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
1439 |
+
with gr.Tab("Login"):
|
1440 |
+
login_username = gr.Textbox(label="Username")
|
1441 |
+
login_password = gr.Password(label="Password")
|
1442 |
+
login_button = gr.Button("Login")
|
1443 |
+
login_output = gr.Textbox(label="Login Status", interactive=False)
|
1444 |
+
login_button.click(handle_login, inputs=[login_username, login_password], outputs=login_output)
|
1445 |
+
|
1446 |
+
with gr.Tab("Signup"):
|
1447 |
+
signup_username = gr.Textbox(label="Username")
|
1448 |
+
signup_password = gr.Password(label="Password")
|
1449 |
+
signup_button = gr.Button("Signup")
|
1450 |
+
signup_output = gr.Textbox(label="Signup Status", interactive=False)
|
1451 |
+
signup_button.click(handle_signup, inputs=[signup_username, signup_password], outputs=signup_output)
|
1452 |
+
|
1453 |
+
with gr.Row():
|
1454 |
with gr.Column():
|
1455 |
+
state = gr.State()
|
1456 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1457 |
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
|
1458 |
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
|
1459 |
+
|
1460 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
1461 |
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
|
1462 |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
|
|
|
1465 |
chatbot.like(print_like_dislike, None, None)
|
1466 |
clear_button = gr.Button("Clear")
|
1467 |
clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
|
1468 |
+
|
1469 |
+
|
1470 |
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
|
1471 |
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
|
1472 |
+
|
1473 |
gr.Markdown("<h1 style='color: red;'>Map</h1>", elem_id="location-markdown")
|
1474 |
location_output = gr.HTML()
|
1475 |
bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output])
|
1476 |
+
|
1477 |
with gr.Column():
|
1478 |
weather_output = gr.HTML(value=fetch_local_weather())
|
1479 |
news_output = gr.HTML(value=fetch_local_news())
|
1480 |
+
news_output = gr.HTML(value=fetch_local_events())
|
1481 |
+
|
1482 |
with gr.Column():
|
1483 |
image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
|
1484 |
image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
|
1485 |
image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
|
1486 |
+
|
1487 |
refresh_button = gr.Button("Refresh Images")
|
1488 |
refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
|
1489 |
|
1490 |
demo.queue()
|
1491 |
demo.launch(share=True)
|
1492 |
|
1493 |
+
|
1494 |
+
|
1495 |
+
|
1496 |
+
|