eienmojiki's picture
Create vae.py
882a1fc verified
import torch.nn as nn
import torch
import cv2
import numpy as np
import safetensors.torch as sf
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
from tqdm import tqdm
from typing import Optional, Tuple
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
import torchvision
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class LatentTransparencyOffsetEncoder(torch.nn.Module):
def __init__(self, latent_c=4, *args, **kwargs):
super().__init__(*args, **kwargs)
self.blocks = torch.nn.Sequential(
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)),
)
def __call__(self, x):
return self.blocks(x)
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
class UNet1024(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
layers_per_block: int = 2,
mid_block_scale_factor: float = 1,
downsample_padding: int = 1,
downsample_type: str = "conv",
upsample_type: str = "conv",
dropout: float = 0.0,
act_fn: str = "silu",
attention_head_dim: Optional[int] = 8,
norm_num_groups: int = 4,
norm_eps: float = 1e-5,
latent_c: int = 4,
):
super().__init__()
# input
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1))
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=None,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
downsample_padding=downsample_padding,
resnet_time_scale_shift="default",
downsample_type=downsample_type,
dropout=dropout,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
temb_channels=None,
dropout=dropout,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift="default",
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
resnet_groups=norm_num_groups,
attn_groups=None,
add_attention=True,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=None,
add_upsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
resnet_time_scale_shift="default",
upsample_type=upsample_type,
dropout=dropout,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def forward(self, x, latent):
sample_latent = self.latent_conv_in(latent)
sample = self.conv_in(x)
emb = None
down_block_res_samples = (sample,)
for i, downsample_block in enumerate(self.down_blocks):
if i == 3:
sample = sample + sample_latent
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
sample = self.mid_block(sample, emb)
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
sample = upsample_block(sample, res_samples, emb)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
def checkerboard(shape):
return np.indices(shape).sum(axis=0) % 2
def build_alpha_pyramid(color, alpha, dk=1.2):
# Written by lvmin at Stanford
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
pyramid = []
current_premultiplied_color = color * alpha
current_alpha = alpha
while True:
pyramid.append((current_premultiplied_color, current_alpha))
H, W, C = current_alpha.shape
if min(H, W) == 1:
break
current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)
current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None]
return pyramid[::-1]
def pad_rgb(np_rgba_hwc_uint8):
# Written by lvmin at Stanford
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0
pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:])
top_c, top_a = pyramid[0]
fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32)
for layer_c, layer_a in pyramid:
layer_h, layer_w, _ = layer_c.shape
fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR)
fg = layer_c + fg * (1.0 - layer_a)
return fg
def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor):
# Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample()
x = dist.mean + dist.std * perturbation.to(dist.std)
return x
class TransparentVAE(torch.nn.Module):
def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.sd_vae = sd_vae
self.sd_vae.to(dtype=self.dtype)
self.sd_vae.requires_grad_(False)
self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c)
if encoder_file is not None:
temp = sf.load_file(encoder_file)
# del temp['blocks.16.weight']
# del temp['blocks.16.bias']
self.encoder.load_state_dict(temp, strict=True)
del temp
self.encoder.to(dtype=self.dtype)
self.alpha = alpha
self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c)
if decoder_file is not None:
temp = sf.load_file(decoder_file)
# del temp['latent_conv_in.weight']
# del temp['latent_conv_in.bias']
self.decoder.load_state_dict(temp, strict=True)
del temp
self.decoder.to(dtype=self.dtype)
self.latent_c = latent_c
def sd_decode(self, latent):
return self.sd_vae.decode(latent)
def decode(self, latent, aug=True):
origin_pixel = self.sd_vae.decode(latent).sample
origin_pixel = (origin_pixel * 0.5 + 0.5)
if not aug:
y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype))
return origin_pixel, y
list_y = []
for i in range(int(latent.shape[0])):
y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype))
list_y.append(y)
y = torch.concat(list_y, dim=0)
return origin_pixel, y
def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
a_bchw_01 = img_rgba[:, 3:, :, :]
vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype)
latent_dist = self.sd_vae.encode(vae_feed).latent_dist
offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype)
offset = self.encoder(offset_feed) * self.alpha
if use_offset:
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
else:
latent = latent_dist.sample()
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
return latent
def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset))
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def estimate_augmented(self, pixel, latent):
args = [
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
]
result = []
for flip, rok in tqdm(args):
feed_pixel = pixel.clone()
feed_latent = latent.clone()
if flip:
feed_pixel = torch.flip(feed_pixel, dims=(3,))
feed_latent = torch.flip(feed_latent, dims=(3,))
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
eps = self.decoder(feed_pixel, feed_latent).clip(0, 1)
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
if flip:
eps = torch.flip(eps, dims=(3,))
result += [eps]
result = torch.stack(result, dim=0)
median = torch.median(result, dim=0).values
return median
class TransparentVAEDecoder(torch.nn.Module):
def __init__(self, filename, dtype=torch.float16, *args, **kwargs):
super().__init__(*args, **kwargs)
sd = sf.load_file(filename)
model = UNet1024(in_channels=3, out_channels=4)
model.load_state_dict(sd, strict=True)
model.to(dtype=dtype)
model.eval()
self.model = model
self.dtype = dtype
return
@torch.no_grad()
def estimate_single_pass(self, pixel, latent):
y = self.model(pixel, latent)
return y
@torch.no_grad()
def estimate_augmented(self, pixel, latent):
args = [
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
]
result = []
for flip, rok in tqdm(args):
feed_pixel = pixel.clone()
feed_latent = latent.clone()
if flip:
feed_pixel = torch.flip(feed_pixel, dims=(3,))
feed_latent = torch.flip(feed_latent, dims=(3,))
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
if flip:
eps = torch.flip(eps, dims=(3,))
result += [eps]
result = torch.stack(result, dim=0)
median = torch.median(result, dim=0).values
return median
@torch.no_grad()
def forward(self, sd_vae, latent):
pixel = sd_vae.decode(latent).sample
pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype)
latent = latent.to(self.dtype)
result_list = []
vis_list = []
for i in range(int(latent.shape[0])):
y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1])
y = y.clip(0, 1).movedim(1, -1)
alpha = y[..., :1]
fg = y[..., 1:]
B, H, W, C = fg.shape
cb = checkerboard(shape=(H // 64, W // 64))
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
cb = torch.from_numpy(cb).to(fg)
vis = (fg * alpha + cb * (1 - alpha))[0]
vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
vis_list.append(vis)
png = torch.cat([fg, alpha], dim=3)[0]
png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
result_list.append(png)
return result_list, vis_list
class TransparentVAEEncoder(torch.nn.Module):
def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs):
super().__init__(*args, **kwargs)
sd = sf.load_file(filename)
self.dtype = dtype
model = LatentTransparencyOffsetEncoder()
model.load_state_dict(sd, strict=True)
model.to(dtype=self.dtype)
model.eval()
self.model = model
# similar to LoRA's alpha to avoid initial zero-initialized outputs being too small
self.alpha = alpha
return
@torch.no_grad()
def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True):
list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8]
rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1)
rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0
rgb_bchw_01 = rgba_bchw_01[:, :3, :, :]
a_bchw_01 = rgba_bchw_01[:, 3:, :, :]
vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01
vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype)
latent_dist = sd_vae.encode(vae_feed).latent_dist
offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype)
offset = self.model(offset_feed) * self.alpha
if use_offset:
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
else:
latent = latent_dist.sample()
return latent