Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
import torch | |
import cv2 | |
import numpy as np | |
import safetensors.torch as sf | |
from accelerate.logging import get_logger | |
logger = get_logger(__name__, log_level="INFO") | |
from tqdm import tqdm | |
from typing import Optional, Tuple | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution | |
import torchvision | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class LatentTransparencyOffsetEncoder(torch.nn.Module): | |
def __init__(self, latent_c=4, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.blocks = torch.nn.Sequential( | |
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)), | |
) | |
def __call__(self, x): | |
return self.blocks(x) | |
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3 | |
class UNet1024(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), | |
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"), | |
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512), | |
layers_per_block: int = 2, | |
mid_block_scale_factor: float = 1, | |
downsample_padding: int = 1, | |
downsample_type: str = "conv", | |
upsample_type: str = "conv", | |
dropout: float = 0.0, | |
act_fn: str = "silu", | |
attention_head_dim: Optional[int] = 8, | |
norm_num_groups: int = 4, | |
norm_eps: float = 1e-5, | |
latent_c: int = 4, | |
): | |
super().__init__() | |
# input | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1)) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=None, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift="default", | |
downsample_type=downsample_type, | |
dropout=dropout, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
temb_channels=None, | |
dropout=dropout, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift="default", | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
attn_groups=None, | |
add_attention=True, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=None, | |
add_upsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, | |
resnet_time_scale_shift="default", | |
upsample_type=upsample_type, | |
dropout=dropout, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
def forward(self, x, latent): | |
sample_latent = self.latent_conv_in(latent) | |
sample = self.conv_in(x) | |
emb = None | |
down_block_res_samples = (sample,) | |
for i, downsample_block in enumerate(self.down_blocks): | |
if i == 3: | |
sample = sample + sample_latent | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
sample = self.mid_block(sample, emb) | |
for upsample_block in self.up_blocks: | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
sample = upsample_block(sample, res_samples, emb) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
def checkerboard(shape): | |
return np.indices(shape).sum(axis=0) % 2 | |
def build_alpha_pyramid(color, alpha, dk=1.2): | |
# Written by lvmin at Stanford | |
# Massive iterative Gaussian filters are mathematically consistent to pyramid. | |
pyramid = [] | |
current_premultiplied_color = color * alpha | |
current_alpha = alpha | |
while True: | |
pyramid.append((current_premultiplied_color, current_alpha)) | |
H, W, C = current_alpha.shape | |
if min(H, W) == 1: | |
break | |
current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA) | |
current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None] | |
return pyramid[::-1] | |
def pad_rgb(np_rgba_hwc_uint8): | |
# Written by lvmin at Stanford | |
# Massive iterative Gaussian filters are mathematically consistent to pyramid. | |
np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0 | |
pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:]) | |
top_c, top_a = pyramid[0] | |
fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32) | |
for layer_c, layer_a in pyramid: | |
layer_h, layer_w, _ = layer_c.shape | |
fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR) | |
fg = layer_c + fg * (1.0 - layer_a) | |
return fg | |
def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor): | |
# Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample() | |
x = dist.mean + dist.std * perturbation.to(dist.std) | |
return x | |
class TransparentVAE(torch.nn.Module): | |
def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.dtype = dtype | |
self.sd_vae = sd_vae | |
self.sd_vae.to(dtype=self.dtype) | |
self.sd_vae.requires_grad_(False) | |
self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c) | |
if encoder_file is not None: | |
temp = sf.load_file(encoder_file) | |
# del temp['blocks.16.weight'] | |
# del temp['blocks.16.bias'] | |
self.encoder.load_state_dict(temp, strict=True) | |
del temp | |
self.encoder.to(dtype=self.dtype) | |
self.alpha = alpha | |
self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c) | |
if decoder_file is not None: | |
temp = sf.load_file(decoder_file) | |
# del temp['latent_conv_in.weight'] | |
# del temp['latent_conv_in.bias'] | |
self.decoder.load_state_dict(temp, strict=True) | |
del temp | |
self.decoder.to(dtype=self.dtype) | |
self.latent_c = latent_c | |
def sd_decode(self, latent): | |
return self.sd_vae.decode(latent) | |
def decode(self, latent, aug=True): | |
origin_pixel = self.sd_vae.decode(latent).sample | |
origin_pixel = (origin_pixel * 0.5 + 0.5) | |
if not aug: | |
y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype)) | |
return origin_pixel, y | |
list_y = [] | |
for i in range(int(latent.shape[0])): | |
y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype)) | |
list_y.append(y) | |
y = torch.concat(list_y, dim=0) | |
return origin_pixel, y | |
def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True): | |
a_bchw_01 = img_rgba[:, 3:, :, :] | |
vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype) | |
latent_dist = self.sd_vae.encode(vae_feed).latent_dist | |
offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype) | |
offset = self.encoder(offset_feed) * self.alpha | |
if use_offset: | |
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset) | |
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor) | |
else: | |
latent = latent_dist.sample() | |
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor) | |
return latent | |
def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True): | |
return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset)) | |
def device(self): | |
return next(self.parameters()).device | |
def estimate_augmented(self, pixel, latent): | |
args = [ | |
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3], | |
] | |
result = [] | |
for flip, rok in tqdm(args): | |
feed_pixel = pixel.clone() | |
feed_latent = latent.clone() | |
if flip: | |
feed_pixel = torch.flip(feed_pixel, dims=(3,)) | |
feed_latent = torch.flip(feed_latent, dims=(3,)) | |
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3)) | |
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3)) | |
eps = self.decoder(feed_pixel, feed_latent).clip(0, 1) | |
eps = torch.rot90(eps, k=-rok, dims=(2, 3)) | |
if flip: | |
eps = torch.flip(eps, dims=(3,)) | |
result += [eps] | |
result = torch.stack(result, dim=0) | |
median = torch.median(result, dim=0).values | |
return median | |
class TransparentVAEDecoder(torch.nn.Module): | |
def __init__(self, filename, dtype=torch.float16, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
sd = sf.load_file(filename) | |
model = UNet1024(in_channels=3, out_channels=4) | |
model.load_state_dict(sd, strict=True) | |
model.to(dtype=dtype) | |
model.eval() | |
self.model = model | |
self.dtype = dtype | |
return | |
def estimate_single_pass(self, pixel, latent): | |
y = self.model(pixel, latent) | |
return y | |
def estimate_augmented(self, pixel, latent): | |
args = [ | |
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3], | |
] | |
result = [] | |
for flip, rok in tqdm(args): | |
feed_pixel = pixel.clone() | |
feed_latent = latent.clone() | |
if flip: | |
feed_pixel = torch.flip(feed_pixel, dims=(3,)) | |
feed_latent = torch.flip(feed_latent, dims=(3,)) | |
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3)) | |
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3)) | |
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1) | |
eps = torch.rot90(eps, k=-rok, dims=(2, 3)) | |
if flip: | |
eps = torch.flip(eps, dims=(3,)) | |
result += [eps] | |
result = torch.stack(result, dim=0) | |
median = torch.median(result, dim=0).values | |
return median | |
def forward(self, sd_vae, latent): | |
pixel = sd_vae.decode(latent).sample | |
pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype) | |
latent = latent.to(self.dtype) | |
result_list = [] | |
vis_list = [] | |
for i in range(int(latent.shape[0])): | |
y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1]) | |
y = y.clip(0, 1).movedim(1, -1) | |
alpha = y[..., :1] | |
fg = y[..., 1:] | |
B, H, W, C = fg.shape | |
cb = checkerboard(shape=(H // 64, W // 64)) | |
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST) | |
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None] | |
cb = torch.from_numpy(cb).to(fg) | |
vis = (fg * alpha + cb * (1 - alpha))[0] | |
vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8) | |
vis_list.append(vis) | |
png = torch.cat([fg, alpha], dim=3)[0] | |
png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8) | |
result_list.append(png) | |
return result_list, vis_list | |
class TransparentVAEEncoder(torch.nn.Module): | |
def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
sd = sf.load_file(filename) | |
self.dtype = dtype | |
model = LatentTransparencyOffsetEncoder() | |
model.load_state_dict(sd, strict=True) | |
model.to(dtype=self.dtype) | |
model.eval() | |
self.model = model | |
# similar to LoRA's alpha to avoid initial zero-initialized outputs being too small | |
self.alpha = alpha | |
return | |
def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True): | |
list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8] | |
rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1) | |
rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0 | |
rgb_bchw_01 = rgba_bchw_01[:, :3, :, :] | |
a_bchw_01 = rgba_bchw_01[:, 3:, :, :] | |
vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01 | |
vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype) | |
latent_dist = sd_vae.encode(vae_feed).latent_dist | |
offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype) | |
offset = self.model(offset_feed) * self.alpha | |
if use_offset: | |
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset) | |
else: | |
latent = latent_dist.sample() | |
return latent |