File size: 17,194 Bytes
882a1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import torch.nn as nn
import torch
import cv2
import numpy as np
import safetensors.torch as sf
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")

from tqdm import tqdm
from typing import Optional, Tuple
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution

import torchvision


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class LatentTransparencyOffsetEncoder(torch.nn.Module):
    def __init__(self, latent_c=4, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.blocks = torch.nn.Sequential(
            torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
            nn.SiLU(),
            torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
            nn.SiLU(),
            torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
            nn.SiLU(),
            torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
            nn.SiLU(),
            torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
            nn.SiLU(),
            torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
            nn.SiLU(),
            torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
            nn.SiLU(),
            torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
            nn.SiLU(),
            zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)),
        )

    def __call__(self, x):
        return self.blocks(x)


# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
class UNet1024(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
        up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
        block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
        layers_per_block: int = 2,
        mid_block_scale_factor: float = 1,
        downsample_padding: int = 1,
        downsample_type: str = "conv",
        upsample_type: str = "conv",
        dropout: float = 0.0,
        act_fn: str = "silu",
        attention_head_dim: Optional[int] = 8,
        norm_num_groups: int = 4,
        norm_eps: float = 1e-5,
        latent_c: int = 4,
    ):
        super().__init__()

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
        self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1))

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=None,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
                downsample_padding=downsample_padding,
                resnet_time_scale_shift="default",
                downsample_type=downsample_type,
                dropout=dropout,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            temb_channels=None,
            dropout=dropout,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
            attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
            resnet_groups=norm_num_groups,
            attn_groups=None,
            add_attention=True,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=None,
                add_upsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
                resnet_time_scale_shift="default",
                upsample_type=upsample_type,
                dropout=dropout,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)

    def forward(self, x, latent):
        sample_latent = self.latent_conv_in(latent)
        sample = self.conv_in(x)
        emb = None

        down_block_res_samples = (sample,)
        for i, downsample_block in enumerate(self.down_blocks):
            if i == 3:
                sample = sample + sample_latent

            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
            down_block_res_samples += res_samples

        sample = self.mid_block(sample, emb)

        for upsample_block in self.up_blocks:
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
            sample = upsample_block(sample, res_samples, emb)

        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)
        return sample


def checkerboard(shape):
    return np.indices(shape).sum(axis=0) % 2


def build_alpha_pyramid(color, alpha, dk=1.2):
    # Written by lvmin at Stanford
    # Massive iterative Gaussian filters are mathematically consistent to pyramid.

    pyramid = []
    current_premultiplied_color = color * alpha
    current_alpha = alpha

    while True:
        pyramid.append((current_premultiplied_color, current_alpha))

        H, W, C = current_alpha.shape
        if min(H, W) == 1:
            break

        current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)
        current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None]
    return pyramid[::-1]


def pad_rgb(np_rgba_hwc_uint8):
    # Written by lvmin at Stanford
    # Massive iterative Gaussian filters are mathematically consistent to pyramid.

    np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0
    pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:])

    top_c, top_a = pyramid[0]
    fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32)

    for layer_c, layer_a in pyramid:
        layer_h, layer_w, _ = layer_c.shape
        fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR)
        fg = layer_c + fg * (1.0 - layer_a)

    return fg


def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor):
    # Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample()
    x = dist.mean + dist.std * perturbation.to(dist.std)
    return x

class TransparentVAE(torch.nn.Module):
    def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.dtype = dtype
        
        self.sd_vae = sd_vae
        self.sd_vae.to(dtype=self.dtype)
        self.sd_vae.requires_grad_(False)

        self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c)
        if encoder_file is not None:
            temp = sf.load_file(encoder_file)
            # del temp['blocks.16.weight']
            # del temp['blocks.16.bias']
            self.encoder.load_state_dict(temp, strict=True)
            del temp
        self.encoder.to(dtype=self.dtype)
        self.alpha = alpha

        self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c) 
        if decoder_file is not None:    
            temp = sf.load_file(decoder_file)
            # del temp['latent_conv_in.weight']
            # del temp['latent_conv_in.bias']
            self.decoder.load_state_dict(temp, strict=True)
            del temp
        self.decoder.to(dtype=self.dtype)   
        self.latent_c = latent_c
        

    def sd_decode(self, latent):
        return self.sd_vae.decode(latent)

    def decode(self, latent, aug=True):
        origin_pixel = self.sd_vae.decode(latent).sample
        origin_pixel = (origin_pixel * 0.5 + 0.5)
        if not aug:
            y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype))
            return origin_pixel, y
        list_y = []
        for i in range(int(latent.shape[0])):
            y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype))
            list_y.append(y)
        y = torch.concat(list_y, dim=0)
        return origin_pixel, y

    def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
        a_bchw_01 = img_rgba[:, 3:, :, :]
        vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype)
        latent_dist = self.sd_vae.encode(vae_feed).latent_dist
        offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype)
        offset = self.encoder(offset_feed) * self.alpha
        if use_offset:
            latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
            latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
        else:
            latent = latent_dist.sample()
            latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
        return latent
    
    def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
        return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset))
    
    @property
    def device(self):
        return next(self.parameters()).device

    @torch.no_grad()
    def estimate_augmented(self, pixel, latent):
        args = [
            [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
        ]

        result = []

        for flip, rok in tqdm(args):
            feed_pixel = pixel.clone()
            feed_latent = latent.clone()

            if flip:
                feed_pixel = torch.flip(feed_pixel, dims=(3,))
                feed_latent = torch.flip(feed_latent, dims=(3,))

            feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
            feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))

            eps = self.decoder(feed_pixel, feed_latent).clip(0, 1)
            eps = torch.rot90(eps, k=-rok, dims=(2, 3))

            if flip:
                eps = torch.flip(eps, dims=(3,))

            result += [eps]

        result = torch.stack(result, dim=0)
        median = torch.median(result, dim=0).values
        return median
        


class TransparentVAEDecoder(torch.nn.Module):
    def __init__(self, filename, dtype=torch.float16, *args, **kwargs):
        super().__init__(*args, **kwargs)
        sd = sf.load_file(filename)
        model = UNet1024(in_channels=3, out_channels=4)
        model.load_state_dict(sd, strict=True)
        model.to(dtype=dtype)
        model.eval()
        self.model = model
        self.dtype = dtype
        return

    @torch.no_grad()
    def estimate_single_pass(self, pixel, latent):
        y = self.model(pixel, latent)
        return y

    @torch.no_grad()
    def estimate_augmented(self, pixel, latent):
        args = [
            [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
        ]

        result = []

        for flip, rok in tqdm(args):
            feed_pixel = pixel.clone()
            feed_latent = latent.clone()

            if flip:
                feed_pixel = torch.flip(feed_pixel, dims=(3,))
                feed_latent = torch.flip(feed_latent, dims=(3,))

            feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
            feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))

            eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
            eps = torch.rot90(eps, k=-rok, dims=(2, 3))

            if flip:
                eps = torch.flip(eps, dims=(3,))

            result += [eps]

        result = torch.stack(result, dim=0)
        median = torch.median(result, dim=0).values
        return median

    @torch.no_grad()
    def forward(self, sd_vae, latent):
        pixel = sd_vae.decode(latent).sample
        pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype)
        latent = latent.to(self.dtype)
        result_list = []
        vis_list = []

        for i in range(int(latent.shape[0])):
            y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1])

            y = y.clip(0, 1).movedim(1, -1)
            alpha = y[..., :1]
            fg = y[..., 1:]

            B, H, W, C = fg.shape
            cb = checkerboard(shape=(H // 64, W // 64))
            cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
            cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
            cb = torch.from_numpy(cb).to(fg)

            vis = (fg * alpha + cb * (1 - alpha))[0]
            vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
            vis_list.append(vis)

            png = torch.cat([fg, alpha], dim=3)[0]
            png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
            result_list.append(png)

        return result_list, vis_list


class TransparentVAEEncoder(torch.nn.Module):
    def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs):
        super().__init__(*args, **kwargs)
        sd = sf.load_file(filename)
        self.dtype = dtype

        model = LatentTransparencyOffsetEncoder()
        model.load_state_dict(sd, strict=True)
        model.to(dtype=self.dtype)
        model.eval()

        self.model = model

        # similar to LoRA's alpha to avoid initial zero-initialized outputs being too small
        self.alpha = alpha
        return

    @torch.no_grad()
    def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True):
        list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8]
        rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1)
        rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0
        rgb_bchw_01 = rgba_bchw_01[:, :3, :, :]
        a_bchw_01 = rgba_bchw_01[:, 3:, :, :]
        vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01
        vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype)
        latent_dist = sd_vae.encode(vae_feed).latent_dist
        offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype)
        offset = self.model(offset_feed) * self.alpha
        if use_offset:
            latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
        else:
            latent = latent_dist.sample()
        return latent