Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,194 Bytes
882a1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import torch.nn as nn
import torch
import cv2
import numpy as np
import safetensors.torch as sf
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
from tqdm import tqdm
from typing import Optional, Tuple
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
import torchvision
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class LatentTransparencyOffsetEncoder(torch.nn.Module):
def __init__(self, latent_c=4, *args, **kwargs):
super().__init__(*args, **kwargs)
self.blocks = torch.nn.Sequential(
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
nn.SiLU(),
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
nn.SiLU(),
zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)),
)
def __call__(self, x):
return self.blocks(x)
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
class UNet1024(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
layers_per_block: int = 2,
mid_block_scale_factor: float = 1,
downsample_padding: int = 1,
downsample_type: str = "conv",
upsample_type: str = "conv",
dropout: float = 0.0,
act_fn: str = "silu",
attention_head_dim: Optional[int] = 8,
norm_num_groups: int = 4,
norm_eps: float = 1e-5,
latent_c: int = 4,
):
super().__init__()
# input
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1))
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=None,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
downsample_padding=downsample_padding,
resnet_time_scale_shift="default",
downsample_type=downsample_type,
dropout=dropout,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
temb_channels=None,
dropout=dropout,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift="default",
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
resnet_groups=norm_num_groups,
attn_groups=None,
add_attention=True,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=None,
add_upsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
resnet_time_scale_shift="default",
upsample_type=upsample_type,
dropout=dropout,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def forward(self, x, latent):
sample_latent = self.latent_conv_in(latent)
sample = self.conv_in(x)
emb = None
down_block_res_samples = (sample,)
for i, downsample_block in enumerate(self.down_blocks):
if i == 3:
sample = sample + sample_latent
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
sample = self.mid_block(sample, emb)
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
sample = upsample_block(sample, res_samples, emb)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
def checkerboard(shape):
return np.indices(shape).sum(axis=0) % 2
def build_alpha_pyramid(color, alpha, dk=1.2):
# Written by lvmin at Stanford
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
pyramid = []
current_premultiplied_color = color * alpha
current_alpha = alpha
while True:
pyramid.append((current_premultiplied_color, current_alpha))
H, W, C = current_alpha.shape
if min(H, W) == 1:
break
current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)
current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None]
return pyramid[::-1]
def pad_rgb(np_rgba_hwc_uint8):
# Written by lvmin at Stanford
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0
pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:])
top_c, top_a = pyramid[0]
fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32)
for layer_c, layer_a in pyramid:
layer_h, layer_w, _ = layer_c.shape
fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR)
fg = layer_c + fg * (1.0 - layer_a)
return fg
def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor):
# Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample()
x = dist.mean + dist.std * perturbation.to(dist.std)
return x
class TransparentVAE(torch.nn.Module):
def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.sd_vae = sd_vae
self.sd_vae.to(dtype=self.dtype)
self.sd_vae.requires_grad_(False)
self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c)
if encoder_file is not None:
temp = sf.load_file(encoder_file)
# del temp['blocks.16.weight']
# del temp['blocks.16.bias']
self.encoder.load_state_dict(temp, strict=True)
del temp
self.encoder.to(dtype=self.dtype)
self.alpha = alpha
self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c)
if decoder_file is not None:
temp = sf.load_file(decoder_file)
# del temp['latent_conv_in.weight']
# del temp['latent_conv_in.bias']
self.decoder.load_state_dict(temp, strict=True)
del temp
self.decoder.to(dtype=self.dtype)
self.latent_c = latent_c
def sd_decode(self, latent):
return self.sd_vae.decode(latent)
def decode(self, latent, aug=True):
origin_pixel = self.sd_vae.decode(latent).sample
origin_pixel = (origin_pixel * 0.5 + 0.5)
if not aug:
y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype))
return origin_pixel, y
list_y = []
for i in range(int(latent.shape[0])):
y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype))
list_y.append(y)
y = torch.concat(list_y, dim=0)
return origin_pixel, y
def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
a_bchw_01 = img_rgba[:, 3:, :, :]
vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype)
latent_dist = self.sd_vae.encode(vae_feed).latent_dist
offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype)
offset = self.encoder(offset_feed) * self.alpha
if use_offset:
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
else:
latent = latent_dist.sample()
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
return latent
def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset))
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def estimate_augmented(self, pixel, latent):
args = [
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
]
result = []
for flip, rok in tqdm(args):
feed_pixel = pixel.clone()
feed_latent = latent.clone()
if flip:
feed_pixel = torch.flip(feed_pixel, dims=(3,))
feed_latent = torch.flip(feed_latent, dims=(3,))
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
eps = self.decoder(feed_pixel, feed_latent).clip(0, 1)
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
if flip:
eps = torch.flip(eps, dims=(3,))
result += [eps]
result = torch.stack(result, dim=0)
median = torch.median(result, dim=0).values
return median
class TransparentVAEDecoder(torch.nn.Module):
def __init__(self, filename, dtype=torch.float16, *args, **kwargs):
super().__init__(*args, **kwargs)
sd = sf.load_file(filename)
model = UNet1024(in_channels=3, out_channels=4)
model.load_state_dict(sd, strict=True)
model.to(dtype=dtype)
model.eval()
self.model = model
self.dtype = dtype
return
@torch.no_grad()
def estimate_single_pass(self, pixel, latent):
y = self.model(pixel, latent)
return y
@torch.no_grad()
def estimate_augmented(self, pixel, latent):
args = [
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
]
result = []
for flip, rok in tqdm(args):
feed_pixel = pixel.clone()
feed_latent = latent.clone()
if flip:
feed_pixel = torch.flip(feed_pixel, dims=(3,))
feed_latent = torch.flip(feed_latent, dims=(3,))
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
if flip:
eps = torch.flip(eps, dims=(3,))
result += [eps]
result = torch.stack(result, dim=0)
median = torch.median(result, dim=0).values
return median
@torch.no_grad()
def forward(self, sd_vae, latent):
pixel = sd_vae.decode(latent).sample
pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype)
latent = latent.to(self.dtype)
result_list = []
vis_list = []
for i in range(int(latent.shape[0])):
y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1])
y = y.clip(0, 1).movedim(1, -1)
alpha = y[..., :1]
fg = y[..., 1:]
B, H, W, C = fg.shape
cb = checkerboard(shape=(H // 64, W // 64))
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
cb = torch.from_numpy(cb).to(fg)
vis = (fg * alpha + cb * (1 - alpha))[0]
vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
vis_list.append(vis)
png = torch.cat([fg, alpha], dim=3)[0]
png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
result_list.append(png)
return result_list, vis_list
class TransparentVAEEncoder(torch.nn.Module):
def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs):
super().__init__(*args, **kwargs)
sd = sf.load_file(filename)
self.dtype = dtype
model = LatentTransparencyOffsetEncoder()
model.load_state_dict(sd, strict=True)
model.to(dtype=self.dtype)
model.eval()
self.model = model
# similar to LoRA's alpha to avoid initial zero-initialized outputs being too small
self.alpha = alpha
return
@torch.no_grad()
def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True):
list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8]
rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1)
rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0
rgb_bchw_01 = rgba_bchw_01[:, :3, :, :]
a_bchw_01 = rgba_bchw_01[:, 3:, :, :]
vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01
vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype)
latent_dist = sd_vae.encode(vae_feed).latent_dist
offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype)
offset = self.model(offset_feed) * self.alpha
if use_offset:
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
else:
latent = latent_dist.sample()
return latent |