eienmojiki commited on
Commit
882a1fc
·
verified ·
1 Parent(s): 49676ab

Create vae.py

Browse files
Files changed (1) hide show
  1. lib_layerdiffuse/vae.py +447 -0
lib_layerdiffuse/vae.py ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import cv2
4
+ import numpy as np
5
+ import safetensors.torch as sf
6
+ from accelerate.logging import get_logger
7
+ logger = get_logger(__name__, log_level="INFO")
8
+
9
+ from tqdm import tqdm
10
+ from typing import Optional, Tuple
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.models.modeling_utils import ModelMixin
13
+ from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
14
+ from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
15
+
16
+ import torchvision
17
+
18
+
19
+ def zero_module(module):
20
+ """
21
+ Zero out the parameters of a module and return it.
22
+ """
23
+ for p in module.parameters():
24
+ p.detach().zero_()
25
+ return module
26
+
27
+
28
+ class LatentTransparencyOffsetEncoder(torch.nn.Module):
29
+ def __init__(self, latent_c=4, *args, **kwargs):
30
+ super().__init__(*args, **kwargs)
31
+ self.blocks = torch.nn.Sequential(
32
+ torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
33
+ nn.SiLU(),
34
+ torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
35
+ nn.SiLU(),
36
+ torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
37
+ nn.SiLU(),
38
+ torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
39
+ nn.SiLU(),
40
+ torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
41
+ nn.SiLU(),
42
+ torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
43
+ nn.SiLU(),
44
+ torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
45
+ nn.SiLU(),
46
+ torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
47
+ nn.SiLU(),
48
+ zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)),
49
+ )
50
+
51
+ def __call__(self, x):
52
+ return self.blocks(x)
53
+
54
+
55
+ # 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
56
+ class UNet1024(ModelMixin, ConfigMixin):
57
+ @register_to_config
58
+ def __init__(
59
+ self,
60
+ in_channels: int = 3,
61
+ out_channels: int = 3,
62
+ down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
63
+ up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
64
+ block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
65
+ layers_per_block: int = 2,
66
+ mid_block_scale_factor: float = 1,
67
+ downsample_padding: int = 1,
68
+ downsample_type: str = "conv",
69
+ upsample_type: str = "conv",
70
+ dropout: float = 0.0,
71
+ act_fn: str = "silu",
72
+ attention_head_dim: Optional[int] = 8,
73
+ norm_num_groups: int = 4,
74
+ norm_eps: float = 1e-5,
75
+ latent_c: int = 4,
76
+ ):
77
+ super().__init__()
78
+
79
+ # input
80
+ self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
81
+ self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1))
82
+
83
+ self.down_blocks = nn.ModuleList([])
84
+ self.mid_block = None
85
+ self.up_blocks = nn.ModuleList([])
86
+
87
+ # down
88
+ output_channel = block_out_channels[0]
89
+ for i, down_block_type in enumerate(down_block_types):
90
+ input_channel = output_channel
91
+ output_channel = block_out_channels[i]
92
+ is_final_block = i == len(block_out_channels) - 1
93
+
94
+ down_block = get_down_block(
95
+ down_block_type,
96
+ num_layers=layers_per_block,
97
+ in_channels=input_channel,
98
+ out_channels=output_channel,
99
+ temb_channels=None,
100
+ add_downsample=not is_final_block,
101
+ resnet_eps=norm_eps,
102
+ resnet_act_fn=act_fn,
103
+ resnet_groups=norm_num_groups,
104
+ attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
105
+ downsample_padding=downsample_padding,
106
+ resnet_time_scale_shift="default",
107
+ downsample_type=downsample_type,
108
+ dropout=dropout,
109
+ )
110
+ self.down_blocks.append(down_block)
111
+
112
+ # mid
113
+ self.mid_block = UNetMidBlock2D(
114
+ in_channels=block_out_channels[-1],
115
+ temb_channels=None,
116
+ dropout=dropout,
117
+ resnet_eps=norm_eps,
118
+ resnet_act_fn=act_fn,
119
+ output_scale_factor=mid_block_scale_factor,
120
+ resnet_time_scale_shift="default",
121
+ attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
122
+ resnet_groups=norm_num_groups,
123
+ attn_groups=None,
124
+ add_attention=True,
125
+ )
126
+
127
+ # up
128
+ reversed_block_out_channels = list(reversed(block_out_channels))
129
+ output_channel = reversed_block_out_channels[0]
130
+ for i, up_block_type in enumerate(up_block_types):
131
+ prev_output_channel = output_channel
132
+ output_channel = reversed_block_out_channels[i]
133
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
134
+
135
+ is_final_block = i == len(block_out_channels) - 1
136
+
137
+ up_block = get_up_block(
138
+ up_block_type,
139
+ num_layers=layers_per_block + 1,
140
+ in_channels=input_channel,
141
+ out_channels=output_channel,
142
+ prev_output_channel=prev_output_channel,
143
+ temb_channels=None,
144
+ add_upsample=not is_final_block,
145
+ resnet_eps=norm_eps,
146
+ resnet_act_fn=act_fn,
147
+ resnet_groups=norm_num_groups,
148
+ attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
149
+ resnet_time_scale_shift="default",
150
+ upsample_type=upsample_type,
151
+ dropout=dropout,
152
+ )
153
+ self.up_blocks.append(up_block)
154
+ prev_output_channel = output_channel
155
+
156
+ # out
157
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
158
+ self.conv_act = nn.SiLU()
159
+ self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
160
+
161
+ def forward(self, x, latent):
162
+ sample_latent = self.latent_conv_in(latent)
163
+ sample = self.conv_in(x)
164
+ emb = None
165
+
166
+ down_block_res_samples = (sample,)
167
+ for i, downsample_block in enumerate(self.down_blocks):
168
+ if i == 3:
169
+ sample = sample + sample_latent
170
+
171
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
172
+ down_block_res_samples += res_samples
173
+
174
+ sample = self.mid_block(sample, emb)
175
+
176
+ for upsample_block in self.up_blocks:
177
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
178
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
179
+ sample = upsample_block(sample, res_samples, emb)
180
+
181
+ sample = self.conv_norm_out(sample)
182
+ sample = self.conv_act(sample)
183
+ sample = self.conv_out(sample)
184
+ return sample
185
+
186
+
187
+ def checkerboard(shape):
188
+ return np.indices(shape).sum(axis=0) % 2
189
+
190
+
191
+ def build_alpha_pyramid(color, alpha, dk=1.2):
192
+ # Written by lvmin at Stanford
193
+ # Massive iterative Gaussian filters are mathematically consistent to pyramid.
194
+
195
+ pyramid = []
196
+ current_premultiplied_color = color * alpha
197
+ current_alpha = alpha
198
+
199
+ while True:
200
+ pyramid.append((current_premultiplied_color, current_alpha))
201
+
202
+ H, W, C = current_alpha.shape
203
+ if min(H, W) == 1:
204
+ break
205
+
206
+ current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)
207
+ current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None]
208
+ return pyramid[::-1]
209
+
210
+
211
+ def pad_rgb(np_rgba_hwc_uint8):
212
+ # Written by lvmin at Stanford
213
+ # Massive iterative Gaussian filters are mathematically consistent to pyramid.
214
+
215
+ np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0
216
+ pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:])
217
+
218
+ top_c, top_a = pyramid[0]
219
+ fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32)
220
+
221
+ for layer_c, layer_a in pyramid:
222
+ layer_h, layer_w, _ = layer_c.shape
223
+ fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR)
224
+ fg = layer_c + fg * (1.0 - layer_a)
225
+
226
+ return fg
227
+
228
+
229
+ def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor):
230
+ # Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample()
231
+ x = dist.mean + dist.std * perturbation.to(dist.std)
232
+ return x
233
+
234
+ class TransparentVAE(torch.nn.Module):
235
+ def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs):
236
+ super().__init__(*args, **kwargs)
237
+ self.dtype = dtype
238
+
239
+ self.sd_vae = sd_vae
240
+ self.sd_vae.to(dtype=self.dtype)
241
+ self.sd_vae.requires_grad_(False)
242
+
243
+ self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c)
244
+ if encoder_file is not None:
245
+ temp = sf.load_file(encoder_file)
246
+ # del temp['blocks.16.weight']
247
+ # del temp['blocks.16.bias']
248
+ self.encoder.load_state_dict(temp, strict=True)
249
+ del temp
250
+ self.encoder.to(dtype=self.dtype)
251
+ self.alpha = alpha
252
+
253
+ self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c)
254
+ if decoder_file is not None:
255
+ temp = sf.load_file(decoder_file)
256
+ # del temp['latent_conv_in.weight']
257
+ # del temp['latent_conv_in.bias']
258
+ self.decoder.load_state_dict(temp, strict=True)
259
+ del temp
260
+ self.decoder.to(dtype=self.dtype)
261
+ self.latent_c = latent_c
262
+
263
+
264
+ def sd_decode(self, latent):
265
+ return self.sd_vae.decode(latent)
266
+
267
+ def decode(self, latent, aug=True):
268
+ origin_pixel = self.sd_vae.decode(latent).sample
269
+ origin_pixel = (origin_pixel * 0.5 + 0.5)
270
+ if not aug:
271
+ y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype))
272
+ return origin_pixel, y
273
+ list_y = []
274
+ for i in range(int(latent.shape[0])):
275
+ y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype))
276
+ list_y.append(y)
277
+ y = torch.concat(list_y, dim=0)
278
+ return origin_pixel, y
279
+
280
+ def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
281
+ a_bchw_01 = img_rgba[:, 3:, :, :]
282
+ vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype)
283
+ latent_dist = self.sd_vae.encode(vae_feed).latent_dist
284
+ offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype)
285
+ offset = self.encoder(offset_feed) * self.alpha
286
+ if use_offset:
287
+ latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
288
+ latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
289
+ else:
290
+ latent = latent_dist.sample()
291
+ latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
292
+ return latent
293
+
294
+ def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
295
+ return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset))
296
+
297
+ @property
298
+ def device(self):
299
+ return next(self.parameters()).device
300
+
301
+ @torch.no_grad()
302
+ def estimate_augmented(self, pixel, latent):
303
+ args = [
304
+ [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
305
+ ]
306
+
307
+ result = []
308
+
309
+ for flip, rok in tqdm(args):
310
+ feed_pixel = pixel.clone()
311
+ feed_latent = latent.clone()
312
+
313
+ if flip:
314
+ feed_pixel = torch.flip(feed_pixel, dims=(3,))
315
+ feed_latent = torch.flip(feed_latent, dims=(3,))
316
+
317
+ feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
318
+ feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
319
+
320
+ eps = self.decoder(feed_pixel, feed_latent).clip(0, 1)
321
+ eps = torch.rot90(eps, k=-rok, dims=(2, 3))
322
+
323
+ if flip:
324
+ eps = torch.flip(eps, dims=(3,))
325
+
326
+ result += [eps]
327
+
328
+ result = torch.stack(result, dim=0)
329
+ median = torch.median(result, dim=0).values
330
+ return median
331
+
332
+
333
+
334
+ class TransparentVAEDecoder(torch.nn.Module):
335
+ def __init__(self, filename, dtype=torch.float16, *args, **kwargs):
336
+ super().__init__(*args, **kwargs)
337
+ sd = sf.load_file(filename)
338
+ model = UNet1024(in_channels=3, out_channels=4)
339
+ model.load_state_dict(sd, strict=True)
340
+ model.to(dtype=dtype)
341
+ model.eval()
342
+ self.model = model
343
+ self.dtype = dtype
344
+ return
345
+
346
+ @torch.no_grad()
347
+ def estimate_single_pass(self, pixel, latent):
348
+ y = self.model(pixel, latent)
349
+ return y
350
+
351
+ @torch.no_grad()
352
+ def estimate_augmented(self, pixel, latent):
353
+ args = [
354
+ [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
355
+ ]
356
+
357
+ result = []
358
+
359
+ for flip, rok in tqdm(args):
360
+ feed_pixel = pixel.clone()
361
+ feed_latent = latent.clone()
362
+
363
+ if flip:
364
+ feed_pixel = torch.flip(feed_pixel, dims=(3,))
365
+ feed_latent = torch.flip(feed_latent, dims=(3,))
366
+
367
+ feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
368
+ feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
369
+
370
+ eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
371
+ eps = torch.rot90(eps, k=-rok, dims=(2, 3))
372
+
373
+ if flip:
374
+ eps = torch.flip(eps, dims=(3,))
375
+
376
+ result += [eps]
377
+
378
+ result = torch.stack(result, dim=0)
379
+ median = torch.median(result, dim=0).values
380
+ return median
381
+
382
+ @torch.no_grad()
383
+ def forward(self, sd_vae, latent):
384
+ pixel = sd_vae.decode(latent).sample
385
+ pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype)
386
+ latent = latent.to(self.dtype)
387
+ result_list = []
388
+ vis_list = []
389
+
390
+ for i in range(int(latent.shape[0])):
391
+ y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1])
392
+
393
+ y = y.clip(0, 1).movedim(1, -1)
394
+ alpha = y[..., :1]
395
+ fg = y[..., 1:]
396
+
397
+ B, H, W, C = fg.shape
398
+ cb = checkerboard(shape=(H // 64, W // 64))
399
+ cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
400
+ cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
401
+ cb = torch.from_numpy(cb).to(fg)
402
+
403
+ vis = (fg * alpha + cb * (1 - alpha))[0]
404
+ vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
405
+ vis_list.append(vis)
406
+
407
+ png = torch.cat([fg, alpha], dim=3)[0]
408
+ png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
409
+ result_list.append(png)
410
+
411
+ return result_list, vis_list
412
+
413
+
414
+ class TransparentVAEEncoder(torch.nn.Module):
415
+ def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs):
416
+ super().__init__(*args, **kwargs)
417
+ sd = sf.load_file(filename)
418
+ self.dtype = dtype
419
+
420
+ model = LatentTransparencyOffsetEncoder()
421
+ model.load_state_dict(sd, strict=True)
422
+ model.to(dtype=self.dtype)
423
+ model.eval()
424
+
425
+ self.model = model
426
+
427
+ # similar to LoRA's alpha to avoid initial zero-initialized outputs being too small
428
+ self.alpha = alpha
429
+ return
430
+
431
+ @torch.no_grad()
432
+ def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True):
433
+ list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8]
434
+ rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1)
435
+ rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0
436
+ rgb_bchw_01 = rgba_bchw_01[:, :3, :, :]
437
+ a_bchw_01 = rgba_bchw_01[:, 3:, :, :]
438
+ vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01
439
+ vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype)
440
+ latent_dist = sd_vae.encode(vae_feed).latent_dist
441
+ offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype)
442
+ offset = self.model(offset_feed) * self.alpha
443
+ if use_offset:
444
+ latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
445
+ else:
446
+ latent = latent_dist.sample()
447
+ return latent