Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import json | |
# Initialize NLP pipeline | |
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english") | |
def analyze_event(text): | |
try: | |
# Process text with NER pipeline | |
ner_results = ner_pipeline(text) | |
# Group entities | |
entities = { | |
"people": [], | |
"organizations": [], | |
"locations": [], | |
"hashtags": [word for word in text.split() if word.startswith('#')] | |
} | |
for item in ner_results: | |
if item["entity"].endswith("PER"): | |
entities["people"].append(item["word"]) | |
elif item["entity"].endswith("ORG"): | |
entities["organizations"].append(item["word"]) | |
elif item["entity"].endswith("LOC"): | |
entities["locations"].append(item["word"]) | |
# Calculate confidence | |
confidence = min(1.0, ( | |
0.2 * bool(entities["people"]) + | |
0.2 * bool(entities["organizations"]) + | |
0.3 * bool(entities["locations"]) + | |
0.3 * bool(entities["hashtags"]) | |
)) | |
return { | |
"text": text, | |
"entities": entities, | |
"confidence": confidence, | |
"verification_needed": confidence < 0.6 | |
} | |
except Exception as e: | |
return {"error": str(e)} | |
# Create Gradio interface with custom CSS and HTML | |
css = """ | |
.container { max-width: 800px; margin: auto; padding: 20px; } | |
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; } | |
.confidence-high { color: #22c55e; font-weight: bold; } | |
.confidence-low { color: #f97316; font-weight: bold; } | |
.entity-section { margin: 15px 0; } | |
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; } | |
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; } | |
""" | |
def format_results(analysis_result): | |
if "error" in analysis_result: | |
return f"<div style='color: red'>Error: {analysis_result['error']}</div>" | |
confidence_class = "confidence-high" if analysis_result["confidence"] >= 0.6 else "confidence-low" | |
html = f""" | |
<div class="results"> | |
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px;"> | |
<h3 style="margin: 0;">Analysis Results</h3> | |
<div> | |
Confidence Score: <span class="{confidence_class}">{int(analysis_result['confidence'] * 100)}%</span> | |
</div> | |
</div> | |
{f''' | |
<div class="alert-warning"> | |
β οΈ <strong>Verification Required:</strong> Low confidence score detected. Please verify the extracted information. | |
</div> | |
''' if analysis_result["verification_needed"] else ''} | |
<div class="entity-section"> | |
<h4>π€ People Detected</h4> | |
<ul>{''.join(f'<li>{person}</li>' for person in analysis_result['entities']['people']) or '<li>None detected</li>'}</ul> | |
</div> | |
<div class="entity-section"> | |
<h4>π’ Organizations</h4> | |
<ul>{''.join(f'<li>{org}</li>' for org in analysis_result['entities']['organizations']) or '<li>None detected</li>'}</ul> | |
</div> | |
<div class="entity-section"> | |
<h4>π Locations</h4> | |
<ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul> | |
</div> | |
<div class="entity-section"> | |
<h4># Hashtags</h4> | |
<ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul> | |
</div> | |
{f''' | |
<div class="alert-success"> | |
β <strong>Event Validated:</strong> The extracted information meets confidence thresholds. | |
</div> | |
''' if not analysis_result["verification_needed"] else ''} | |
</div> | |
""" | |
return html | |
demo = gr.Interface( | |
fn=lambda text: format_results(analyze_event(text)), | |
inputs=[ | |
gr.Textbox( | |
label="Event Text", | |
placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC #tech')", | |
lines=3 | |
) | |
], | |
outputs=gr.HTML(), | |
title="DoD Event Analysis System", | |
description="Analyze text to extract entities, assess confidence, and identify key event information.", | |
css=css, | |
theme=gr.themes.Soft(), | |
examples=[ | |
["John from Tech Corp. is attending the meeting in Washington, DC tomorrow #tech"], | |
["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA #defense #training"], | |
["Team meeting at headquarters with @commander_smith #briefing"] | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() |