Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import json
|
4 |
+
|
5 |
+
# Initialize NLP pipeline
|
6 |
+
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
|
7 |
+
|
8 |
+
def analyze_event(text):
|
9 |
+
try:
|
10 |
+
# Process text with NER pipeline
|
11 |
+
ner_results = ner_pipeline(text)
|
12 |
+
|
13 |
+
# Group entities
|
14 |
+
entities = {
|
15 |
+
"people": [],
|
16 |
+
"organizations": [],
|
17 |
+
"locations": [],
|
18 |
+
"hashtags": [word for word in text.split() if word.startswith('#')]
|
19 |
+
}
|
20 |
+
|
21 |
+
for item in ner_results:
|
22 |
+
if item["entity"].endswith("PER"):
|
23 |
+
entities["people"].append(item["word"])
|
24 |
+
elif item["entity"].endswith("ORG"):
|
25 |
+
entities["organizations"].append(item["word"])
|
26 |
+
elif item["entity"].endswith("LOC"):
|
27 |
+
entities["locations"].append(item["word"])
|
28 |
+
|
29 |
+
# Calculate confidence
|
30 |
+
confidence = min(1.0, (
|
31 |
+
0.2 * bool(entities["people"]) +
|
32 |
+
0.2 * bool(entities["organizations"]) +
|
33 |
+
0.3 * bool(entities["locations"]) +
|
34 |
+
0.3 * bool(entities["hashtags"])
|
35 |
+
))
|
36 |
+
|
37 |
+
return {
|
38 |
+
"text": text,
|
39 |
+
"entities": entities,
|
40 |
+
"confidence": confidence,
|
41 |
+
"verification_needed": confidence < 0.6
|
42 |
+
}
|
43 |
+
except Exception as e:
|
44 |
+
return {"error": str(e)}
|
45 |
+
|
46 |
+
# Create Gradio interface with custom CSS and HTML
|
47 |
+
css = """
|
48 |
+
.container { max-width: 800px; margin: auto; padding: 20px; }
|
49 |
+
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
|
50 |
+
.confidence-high { color: #22c55e; font-weight: bold; }
|
51 |
+
.confidence-low { color: #f97316; font-weight: bold; }
|
52 |
+
.entity-section { margin: 15px 0; }
|
53 |
+
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
54 |
+
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
55 |
+
"""
|
56 |
+
|
57 |
+
def format_results(analysis_result):
|
58 |
+
if "error" in analysis_result:
|
59 |
+
return f"<div style='color: red'>Error: {analysis_result['error']}</div>"
|
60 |
+
|
61 |
+
confidence_class = "confidence-high" if analysis_result["confidence"] >= 0.6 else "confidence-low"
|
62 |
+
|
63 |
+
html = f"""
|
64 |
+
<div class="results">
|
65 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px;">
|
66 |
+
<h3 style="margin: 0;">Analysis Results</h3>
|
67 |
+
<div>
|
68 |
+
Confidence Score: <span class="{confidence_class}">{int(analysis_result['confidence'] * 100)}%</span>
|
69 |
+
</div>
|
70 |
+
</div>
|
71 |
+
|
72 |
+
{f'''
|
73 |
+
<div class="alert-warning">
|
74 |
+
β οΈ <strong>Verification Required:</strong> Low confidence score detected. Please verify the extracted information.
|
75 |
+
</div>
|
76 |
+
''' if analysis_result["verification_needed"] else ''}
|
77 |
+
|
78 |
+
<div class="entity-section">
|
79 |
+
<h4>π€ People Detected</h4>
|
80 |
+
<ul>{''.join(f'<li>{person}</li>' for person in analysis_result['entities']['people']) or '<li>None detected</li>'}</ul>
|
81 |
+
</div>
|
82 |
+
|
83 |
+
<div class="entity-section">
|
84 |
+
<h4>π’ Organizations</h4>
|
85 |
+
<ul>{''.join(f'<li>{org}</li>' for org in analysis_result['entities']['organizations']) or '<li>None detected</li>'}</ul>
|
86 |
+
</div>
|
87 |
+
|
88 |
+
<div class="entity-section">
|
89 |
+
<h4>π Locations</h4>
|
90 |
+
<ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
|
91 |
+
</div>
|
92 |
+
|
93 |
+
<div class="entity-section">
|
94 |
+
<h4># Hashtags</h4>
|
95 |
+
<ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
|
96 |
+
</div>
|
97 |
+
|
98 |
+
{f'''
|
99 |
+
<div class="alert-success">
|
100 |
+
β
<strong>Event Validated:</strong> The extracted information meets confidence thresholds.
|
101 |
+
</div>
|
102 |
+
''' if not analysis_result["verification_needed"] else ''}
|
103 |
+
</div>
|
104 |
+
"""
|
105 |
+
return html
|
106 |
+
|
107 |
+
demo = gr.Interface(
|
108 |
+
fn=lambda text: format_results(analyze_event(text)),
|
109 |
+
inputs=[
|
110 |
+
gr.Textbox(
|
111 |
+
label="Event Text",
|
112 |
+
placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC #tech')",
|
113 |
+
lines=3
|
114 |
+
)
|
115 |
+
],
|
116 |
+
outputs=gr.HTML(),
|
117 |
+
title="DoD Event Analysis System",
|
118 |
+
description="Analyze text to extract entities, assess confidence, and identify key event information.",
|
119 |
+
css=css,
|
120 |
+
theme=gr.themes.Soft(),
|
121 |
+
examples=[
|
122 |
+
["John from Tech Corp. is attending the meeting in Washington, DC tomorrow #tech"],
|
123 |
+
["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA #defense #training"],
|
124 |
+
["Team meeting at headquarters with @commander_smith #briefing"]
|
125 |
+
]
|
126 |
+
)
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
demo.launch()
|