File size: 4,960 Bytes
c0a677b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from transformers import pipeline
import json

# Initialize NLP pipeline
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")

def analyze_event(text):
    try:
        # Process text with NER pipeline
        ner_results = ner_pipeline(text)
        
        # Group entities
        entities = {
            "people": [],
            "organizations": [],
            "locations": [],
            "hashtags": [word for word in text.split() if word.startswith('#')]
        }
        
        for item in ner_results:
            if item["entity"].endswith("PER"):
                entities["people"].append(item["word"])
            elif item["entity"].endswith("ORG"):
                entities["organizations"].append(item["word"])
            elif item["entity"].endswith("LOC"):
                entities["locations"].append(item["word"])
        
        # Calculate confidence
        confidence = min(1.0, (
            0.2 * bool(entities["people"]) +
            0.2 * bool(entities["organizations"]) +
            0.3 * bool(entities["locations"]) +
            0.3 * bool(entities["hashtags"])
        ))
        
        return {
            "text": text,
            "entities": entities,
            "confidence": confidence,
            "verification_needed": confidence < 0.6
        }
    except Exception as e:
        return {"error": str(e)}

# Create Gradio interface with custom CSS and HTML
css = """
.container { max-width: 800px; margin: auto; padding: 20px; }
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
.confidence-high { color: #22c55e; font-weight: bold; }
.confidence-low { color: #f97316; font-weight: bold; }
.entity-section { margin: 15px 0; }
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
"""

def format_results(analysis_result):
    if "error" in analysis_result:
        return f"<div style='color: red'>Error: {analysis_result['error']}</div>"
    
    confidence_class = "confidence-high" if analysis_result["confidence"] >= 0.6 else "confidence-low"
    
    html = f"""
    <div class="results">
        <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px;">
            <h3 style="margin: 0;">Analysis Results</h3>
            <div>
                Confidence Score: <span class="{confidence_class}">{int(analysis_result['confidence'] * 100)}%</span>
            </div>
        </div>
        
        {f'''
        <div class="alert-warning">
            ⚠️ <strong>Verification Required:</strong> Low confidence score detected. Please verify the extracted information.
        </div>
        ''' if analysis_result["verification_needed"] else ''}
        
        <div class="entity-section">
            <h4>πŸ‘€ People Detected</h4>
            <ul>{''.join(f'<li>{person}</li>' for person in analysis_result['entities']['people']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4>🏒 Organizations</h4>
            <ul>{''.join(f'<li>{org}</li>' for org in analysis_result['entities']['organizations']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4>πŸ“ Locations</h4>
            <ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4># Hashtags</h4>
            <ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
        </div>
        
        {f'''
        <div class="alert-success">
            βœ… <strong>Event Validated:</strong> The extracted information meets confidence thresholds.
        </div>
        ''' if not analysis_result["verification_needed"] else ''}
    </div>
    """
    return html

demo = gr.Interface(
    fn=lambda text: format_results(analyze_event(text)),
    inputs=[
        gr.Textbox(
            label="Event Text",
            placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC #tech')",
            lines=3
        )
    ],
    outputs=gr.HTML(),
    title="DoD Event Analysis System",
    description="Analyze text to extract entities, assess confidence, and identify key event information.",
    css=css,
    theme=gr.themes.Soft(),
    examples=[
        ["John from Tech Corp. is attending the meeting in Washington, DC tomorrow #tech"],
        ["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA #defense #training"],
        ["Team meeting at headquarters with @commander_smith #briefing"]
    ]
)

if __name__ == "__main__":
    demo.launch()