dwb2023's picture
Update app.py
4088373 verified
raw
history blame
11.9 kB
import gradio as gr
from transformers import pipeline
import json
from datetime import datetime
import sqlite3
import asyncio
from concurrent.futures import ThreadPoolExecutor
import re
# Initialize NLP pipelines
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
classifier = pipeline("zero-shot-classification")
class OntologyRegistry:
def __init__(self):
self.temporal_patterns = [
r'\b\d{1,2}:\d{2}\s*(?:AM|PM|am|pm)?\b',
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2}(?:st|nd|rd|th)?,? \d{4}\b',
r'\btomorrow\b',
r'\bin \d+ (?:days?|weeks?|months?)\b'
]
self.location_patterns = [
r'\b(?:in|at|from|to) ([A-Z][a-zA-Z]+(,? [A-Z]{2})?)\b',
r'\b[A-Z][a-zA-Z]+ Base\b',
r'\bHeadquarters\b',
r'\bHQ\b'
]
self.entity_types = {
'PER': 'person',
'ORG': 'organization',
'LOC': 'location',
'MISC': 'miscellaneous'
}
def validate_pattern(self, text, pattern_type):
patterns = getattr(self, f"{pattern_type}_patterns", [])
matches = []
for pattern in patterns:
matches.extend(re.finditer(pattern, text))
return [m.group() for m in matches]
class RelationshipEngine:
def __init__(self, db_path=':memory:'):
self.conn = sqlite3.connect(db_path)
self.setup_database()
def setup_database(self):
self.conn.execute('''
CREATE TABLE IF NOT EXISTS events (
id INTEGER PRIMARY KEY,
text TEXT,
timestamp DATETIME,
confidence REAL
)
''')
self.conn.execute('''
CREATE TABLE IF NOT EXISTS relationships (
id INTEGER PRIMARY KEY,
source_event_id INTEGER,
target_event_id INTEGER,
relationship_type TEXT,
confidence REAL,
FOREIGN KEY (source_event_id) REFERENCES events(id),
FOREIGN KEY (target_event_id) REFERENCES events(id)
)
''')
self.conn.commit()
def find_related_events(self, event_data):
# Find events with similar entities
cursor = self.conn.execute('''
SELECT * FROM events
WHERE text LIKE ?
ORDER BY timestamp DESC
LIMIT 5
''', (f"%{event_data.get('text', '')}%",))
related_events = cursor.fetchall()
return related_events
def calculate_relationship_confidence(self, event1, event2):
# Simple similarity-based confidence
base_confidence = 0.0
# Entity overlap increases confidence
if set(event1.get('entities', {}).get('people', [])) & set(event2.get('entities', {}).get('people', [])):
base_confidence += 0.3
if set(event1.get('entities', {}).get('organizations', [])) & set(event2.get('entities', {}).get('organizations', [])):
base_confidence += 0.3
if set(event1.get('entities', {}).get('locations', [])) & set(event2.get('entities', {}).get('locations', [])):
base_confidence += 0.4
return min(base_confidence, 1.0)
class EventAnalyzer:
def __init__(self):
self.ontology = OntologyRegistry()
self.relationship_engine = RelationshipEngine()
self.executor = ThreadPoolExecutor(max_workers=3)
async def extract_entities(self, text):
def _extract():
return ner_pipeline(text)
# Run NER in thread pool
ner_results = await asyncio.get_event_loop().run_in_executor(
self.executor, _extract
)
entities = {
"people": [],
"organizations": [],
"locations": [],
"hashtags": [word for word in text.split() if word.startswith('#')]
}
for item in ner_results:
if item["entity"].endswith("PER"):
entities["people"].append(item["word"])
elif item["entity"].endswith("ORG"):
entities["organizations"].append(item["word"])
elif item["entity"].endswith("LOC"):
entities["locations"].append(item["word"])
return entities
async def extract_temporal(self, text):
return self.ontology.validate_pattern(text, 'temporal')
async def extract_locations(self, text):
ml_locations = [loc for loc in await self.extract_entities(text).get('locations', [])]
pattern_locations = self.ontology.validate_pattern(text, 'location')
return list(set(ml_locations + pattern_locations))
async def analyze_event(self, text):
try:
# Parallel extraction
entities_task = self.extract_entities(text)
temporal_task = self.extract_temporal(text)
locations_task = self.extract_locations(text)
# Gather results
entities, temporal, locations = await asyncio.gather(
entities_task, temporal_task, locations_task
)
# Merge location results
entities['locations'] = locations
entities['temporal'] = temporal
# Calculate initial confidence
confidence = min(1.0, (
0.2 * bool(entities["people"]) +
0.2 * bool(entities["organizations"]) +
0.3 * bool(entities["locations"]) +
0.3 * bool(temporal)
))
# Find related events
related_events = self.relationship_engine.find_related_events({
'text': text,
'entities': entities
})
# Adjust confidence based on relationships
if related_events:
relationship_confidence = max(
self.relationship_engine.calculate_relationship_confidence(
{'entities': entities},
{'text': event[1]} # event[1] is the text field
)
for event in related_events
)
confidence = (confidence + relationship_confidence) / 2
result = {
"text": text,
"entities": entities,
"confidence": confidence,
"verification_needed": confidence < 0.6,
"related_events": [
{
"text": event[1],
"timestamp": event[2],
"confidence": event[3]
}
for event in related_events
]
}
# Store event if confidence is sufficient
if confidence >= 0.6:
self.relationship_engine.conn.execute(
'INSERT INTO events (text, timestamp, confidence) VALUES (?, ?, ?)',
(text, datetime.now().isoformat(), confidence)
)
self.relationship_engine.conn.commit()
return result
except Exception as e:
return {"error": str(e)}
# Initialize analyzer
analyzer = EventAnalyzer()
# Custom CSS for UI
css = """
.container { max-width: 1200px; margin: auto; padding: 20px; }
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
.confidence-high { color: #22c55e; font-weight: bold; }
.confidence-low { color: #f97316; font-weight: bold; }
.entity-section { margin: 15px 0; }
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
.related-events { background: #f3f4f6; padding: 15px; border-radius: 5px; margin-top: 15px; }
"""
def format_results(analysis_result):
if "error" in analysis_result:
return f"<div style='color: red'>Error: {analysis_result['error']}</div>"
confidence_class = "confidence-high" if analysis_result["confidence"] >= 0.6 else "confidence-low"
html = f"""
<div class="results">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px;">
<h3 style="margin: 0;">Analysis Results</h3>
<div>
Confidence Score: <span class="{confidence_class}">{int(analysis_result['confidence'] * 100)}%</span>
</div>
</div>
{f'''
<div class="alert-warning">
⚠️ <strong>Verification Required:</strong> Low confidence score detected. Please verify the extracted information.
</div>
''' if analysis_result["verification_needed"] else ''}
<div class="entity-section">
<h4>πŸ‘€ People Detected</h4>
<ul>{''.join(f'<li>{person}</li>' for person in analysis_result['entities']['people']) or '<li>None detected</li>'}</ul>
</div>
<div class="entity-section">
<h4>🏒 Organizations</h4>
<ul>{''.join(f'<li>{org}</li>' for org in analysis_result['entities']['organizations']) or '<li>None detected</li>'}</ul>
</div>
<div class="entity-section">
<h4>πŸ“ Locations</h4>
<ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
</div>
<div class="entity-section">
<h4>πŸ•’ Temporal References</h4>
<ul>{''.join(f'<li>{time}</li>' for time in analysis_result['entities']['temporal']) or '<li>None detected</li>'}</ul>
</div>
<div class="entity-section">
<h4># Hashtags</h4>
<ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
</div>
{f'''
<div class="alert-success">
βœ… <strong>Event Validated:</strong> The extracted information meets confidence thresholds.
</div>
''' if not analysis_result["verification_needed"] else ''}
{f'''
<div class="related-events">
<h4>Related Events</h4>
<ul>
{''.join(f'<li>{event["text"]} ({event["timestamp"]}) - Confidence: {int(event["confidence"] * 100)}%</li>' for event in analysis_result['related_events'])}
</ul>
</div>
''' if analysis_result.get('related_events') else ''}
</div>
"""
return html
async def process_input(text):
result = await analyzer.analyze_event(text)
return format_results(result)
demo = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Event Text",
placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech')",
lines=3
)
],
outputs=gr.HTML(),
title="DoD Event Analysis System",
description="Analyze text to extract entities, assess confidence, and identify key event information with relationship tracking.",
css=css,
theme=gr.themes.Soft(),
examples=[
["John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech"],
["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA on June 15th #defense #training"],
["Team meeting at headquarters with @commander_smith at 0900 #briefing"]
]
)
if __name__ == "__main__":
demo.launch()