Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,117 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import json
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Initialize NLP
|
6 |
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Group entities
|
14 |
entities = {
|
15 |
"people": [],
|
16 |
"organizations": [],
|
@@ -25,33 +126,99 @@ def analyze_event(text):
|
|
25 |
entities["organizations"].append(item["word"])
|
26 |
elif item["entity"].endswith("LOC"):
|
27 |
entities["locations"].append(item["word"])
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
))
|
36 |
-
|
37 |
-
return
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
css = """
|
48 |
-
.container { max-width:
|
49 |
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
|
50 |
.confidence-high { color: #22c55e; font-weight: bold; }
|
51 |
.confidence-low { color: #f97316; font-weight: bold; }
|
52 |
.entity-section { margin: 15px 0; }
|
53 |
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
54 |
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
|
|
55 |
"""
|
56 |
|
57 |
def format_results(analysis_result):
|
@@ -90,6 +257,11 @@ def format_results(analysis_result):
|
|
90 |
<ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
|
91 |
</div>
|
92 |
|
|
|
|
|
|
|
|
|
|
|
93 |
<div class="entity-section">
|
94 |
<h4># Hashtags</h4>
|
95 |
<ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
|
@@ -100,28 +272,41 @@ def format_results(analysis_result):
|
|
100 |
✅ <strong>Event Validated:</strong> The extracted information meets confidence thresholds.
|
101 |
</div>
|
102 |
''' if not analysis_result["verification_needed"] else ''}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
</div>
|
104 |
"""
|
105 |
return html
|
106 |
|
|
|
|
|
|
|
|
|
107 |
demo = gr.Interface(
|
108 |
-
fn=
|
109 |
inputs=[
|
110 |
gr.Textbox(
|
111 |
label="Event Text",
|
112 |
-
placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC #tech')",
|
113 |
lines=3
|
114 |
)
|
115 |
],
|
116 |
outputs=gr.HTML(),
|
117 |
title="DoD Event Analysis System",
|
118 |
-
description="Analyze text to extract entities, assess confidence, and identify key event information.",
|
119 |
css=css,
|
120 |
theme=gr.themes.Soft(),
|
121 |
examples=[
|
122 |
-
["John from Tech Corp. is attending the meeting in Washington, DC tomorrow #tech"],
|
123 |
-
["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA #defense #training"],
|
124 |
-
["Team meeting at headquarters with @commander_smith #briefing"]
|
125 |
]
|
126 |
)
|
127 |
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import json
|
4 |
+
from datetime import datetime
|
5 |
+
import sqlite3
|
6 |
+
import asyncio
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
import re
|
9 |
|
10 |
+
# Initialize NLP pipelines
|
11 |
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
|
12 |
+
classifier = pipeline("zero-shot-classification")
|
13 |
|
14 |
+
class OntologyRegistry:
|
15 |
+
def __init__(self):
|
16 |
+
self.temporal_patterns = [
|
17 |
+
r'\b\d{1,2}:\d{2}\s*(?:AM|PM|am|pm)?\b',
|
18 |
+
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2}(?:st|nd|rd|th)?,? \d{4}\b',
|
19 |
+
r'\btomorrow\b',
|
20 |
+
r'\bin \d+ (?:days?|weeks?|months?)\b'
|
21 |
+
]
|
22 |
+
|
23 |
+
self.location_patterns = [
|
24 |
+
r'\b(?:in|at|from|to) ([A-Z][a-zA-Z]+(,? [A-Z]{2})?)\b',
|
25 |
+
r'\b[A-Z][a-zA-Z]+ Base\b',
|
26 |
+
r'\bHeadquarters\b',
|
27 |
+
r'\bHQ\b'
|
28 |
+
]
|
29 |
+
|
30 |
+
self.entity_types = {
|
31 |
+
'PER': 'person',
|
32 |
+
'ORG': 'organization',
|
33 |
+
'LOC': 'location',
|
34 |
+
'MISC': 'miscellaneous'
|
35 |
+
}
|
36 |
+
|
37 |
+
def validate_pattern(self, text, pattern_type):
|
38 |
+
patterns = getattr(self, f"{pattern_type}_patterns", [])
|
39 |
+
matches = []
|
40 |
+
for pattern in patterns:
|
41 |
+
matches.extend(re.finditer(pattern, text))
|
42 |
+
return [m.group() for m in matches]
|
43 |
+
|
44 |
+
class RelationshipEngine:
|
45 |
+
def __init__(self, db_path=':memory:'):
|
46 |
+
self.conn = sqlite3.connect(db_path)
|
47 |
+
self.setup_database()
|
48 |
+
|
49 |
+
def setup_database(self):
|
50 |
+
self.conn.execute('''
|
51 |
+
CREATE TABLE IF NOT EXISTS events (
|
52 |
+
id INTEGER PRIMARY KEY,
|
53 |
+
text TEXT,
|
54 |
+
timestamp DATETIME,
|
55 |
+
confidence REAL
|
56 |
+
)
|
57 |
+
''')
|
58 |
+
|
59 |
+
self.conn.execute('''
|
60 |
+
CREATE TABLE IF NOT EXISTS relationships (
|
61 |
+
id INTEGER PRIMARY KEY,
|
62 |
+
source_event_id INTEGER,
|
63 |
+
target_event_id INTEGER,
|
64 |
+
relationship_type TEXT,
|
65 |
+
confidence REAL,
|
66 |
+
FOREIGN KEY (source_event_id) REFERENCES events(id),
|
67 |
+
FOREIGN KEY (target_event_id) REFERENCES events(id)
|
68 |
+
)
|
69 |
+
''')
|
70 |
+
self.conn.commit()
|
71 |
+
|
72 |
+
def find_related_events(self, event_data):
|
73 |
+
# Find events with similar entities
|
74 |
+
cursor = self.conn.execute('''
|
75 |
+
SELECT * FROM events
|
76 |
+
WHERE text LIKE ?
|
77 |
+
ORDER BY timestamp DESC
|
78 |
+
LIMIT 5
|
79 |
+
''', (f"%{event_data.get('text', '')}%",))
|
80 |
+
|
81 |
+
related_events = cursor.fetchall()
|
82 |
+
return related_events
|
83 |
+
|
84 |
+
def calculate_relationship_confidence(self, event1, event2):
|
85 |
+
# Simple similarity-based confidence
|
86 |
+
base_confidence = 0.0
|
87 |
+
|
88 |
+
# Entity overlap increases confidence
|
89 |
+
if set(event1.get('entities', {}).get('people', [])) & set(event2.get('entities', {}).get('people', [])):
|
90 |
+
base_confidence += 0.3
|
91 |
+
|
92 |
+
if set(event1.get('entities', {}).get('organizations', [])) & set(event2.get('entities', {}).get('organizations', [])):
|
93 |
+
base_confidence += 0.3
|
94 |
+
|
95 |
+
if set(event1.get('entities', {}).get('locations', [])) & set(event2.get('entities', {}).get('locations', [])):
|
96 |
+
base_confidence += 0.4
|
97 |
+
|
98 |
+
return min(base_confidence, 1.0)
|
99 |
+
|
100 |
+
class EventAnalyzer:
|
101 |
+
def __init__(self):
|
102 |
+
self.ontology = OntologyRegistry()
|
103 |
+
self.relationship_engine = RelationshipEngine()
|
104 |
+
self.executor = ThreadPoolExecutor(max_workers=3)
|
105 |
+
|
106 |
+
async def extract_entities(self, text):
|
107 |
+
def _extract():
|
108 |
+
return ner_pipeline(text)
|
109 |
+
|
110 |
+
# Run NER in thread pool
|
111 |
+
ner_results = await asyncio.get_event_loop().run_in_executor(
|
112 |
+
self.executor, _extract
|
113 |
+
)
|
114 |
|
|
|
115 |
entities = {
|
116 |
"people": [],
|
117 |
"organizations": [],
|
|
|
126 |
entities["organizations"].append(item["word"])
|
127 |
elif item["entity"].endswith("LOC"):
|
128 |
entities["locations"].append(item["word"])
|
129 |
+
|
130 |
+
return entities
|
131 |
+
|
132 |
+
async def extract_temporal(self, text):
|
133 |
+
return self.ontology.validate_pattern(text, 'temporal')
|
134 |
+
|
135 |
+
async def extract_locations(self, text):
|
136 |
+
ml_locations = [loc for loc in await self.extract_entities(text).get('locations', [])]
|
137 |
+
pattern_locations = self.ontology.validate_pattern(text, 'location')
|
138 |
+
return list(set(ml_locations + pattern_locations))
|
139 |
+
|
140 |
+
async def analyze_event(self, text):
|
141 |
+
try:
|
142 |
+
# Parallel extraction
|
143 |
+
entities_task = self.extract_entities(text)
|
144 |
+
temporal_task = self.extract_temporal(text)
|
145 |
+
locations_task = self.extract_locations(text)
|
146 |
+
|
147 |
+
# Gather results
|
148 |
+
entities, temporal, locations = await asyncio.gather(
|
149 |
+
entities_task, temporal_task, locations_task
|
150 |
+
)
|
151 |
+
|
152 |
+
# Merge location results
|
153 |
+
entities['locations'] = locations
|
154 |
+
entities['temporal'] = temporal
|
155 |
+
|
156 |
+
# Calculate initial confidence
|
157 |
+
confidence = min(1.0, (
|
158 |
+
0.2 * bool(entities["people"]) +
|
159 |
+
0.2 * bool(entities["organizations"]) +
|
160 |
+
0.3 * bool(entities["locations"]) +
|
161 |
+
0.3 * bool(temporal)
|
162 |
+
))
|
163 |
+
|
164 |
+
# Find related events
|
165 |
+
related_events = self.relationship_engine.find_related_events({
|
166 |
+
'text': text,
|
167 |
+
'entities': entities
|
168 |
+
})
|
169 |
+
|
170 |
+
# Adjust confidence based on relationships
|
171 |
+
if related_events:
|
172 |
+
relationship_confidence = max(
|
173 |
+
self.relationship_engine.calculate_relationship_confidence(
|
174 |
+
{'entities': entities},
|
175 |
+
{'text': event[1]} # event[1] is the text field
|
176 |
+
)
|
177 |
+
for event in related_events
|
178 |
+
)
|
179 |
+
confidence = (confidence + relationship_confidence) / 2
|
180 |
+
|
181 |
+
result = {
|
182 |
+
"text": text,
|
183 |
+
"entities": entities,
|
184 |
+
"confidence": confidence,
|
185 |
+
"verification_needed": confidence < 0.6,
|
186 |
+
"related_events": [
|
187 |
+
{
|
188 |
+
"text": event[1],
|
189 |
+
"timestamp": event[2],
|
190 |
+
"confidence": event[3]
|
191 |
+
}
|
192 |
+
for event in related_events
|
193 |
+
]
|
194 |
+
}
|
195 |
+
|
196 |
+
# Store event if confidence is sufficient
|
197 |
+
if confidence >= 0.6:
|
198 |
+
self.relationship_engine.conn.execute(
|
199 |
+
'INSERT INTO events (text, timestamp, confidence) VALUES (?, ?, ?)',
|
200 |
+
(text, datetime.now().isoformat(), confidence)
|
201 |
+
)
|
202 |
+
self.relationship_engine.conn.commit()
|
203 |
+
|
204 |
+
return result
|
205 |
+
|
206 |
+
except Exception as e:
|
207 |
+
return {"error": str(e)}
|
208 |
+
|
209 |
+
# Initialize analyzer
|
210 |
+
analyzer = EventAnalyzer()
|
211 |
|
212 |
+
# Custom CSS for UI
|
213 |
css = """
|
214 |
+
.container { max-width: 1200px; margin: auto; padding: 20px; }
|
215 |
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
|
216 |
.confidence-high { color: #22c55e; font-weight: bold; }
|
217 |
.confidence-low { color: #f97316; font-weight: bold; }
|
218 |
.entity-section { margin: 15px 0; }
|
219 |
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
220 |
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
|
221 |
+
.related-events { background: #f3f4f6; padding: 15px; border-radius: 5px; margin-top: 15px; }
|
222 |
"""
|
223 |
|
224 |
def format_results(analysis_result):
|
|
|
257 |
<ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
|
258 |
</div>
|
259 |
|
260 |
+
<div class="entity-section">
|
261 |
+
<h4>🕒 Temporal References</h4>
|
262 |
+
<ul>{''.join(f'<li>{time}</li>' for time in analysis_result['entities']['temporal']) or '<li>None detected</li>'}</ul>
|
263 |
+
</div>
|
264 |
+
|
265 |
<div class="entity-section">
|
266 |
<h4># Hashtags</h4>
|
267 |
<ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
|
|
|
272 |
✅ <strong>Event Validated:</strong> The extracted information meets confidence thresholds.
|
273 |
</div>
|
274 |
''' if not analysis_result["verification_needed"] else ''}
|
275 |
+
|
276 |
+
{f'''
|
277 |
+
<div class="related-events">
|
278 |
+
<h4>Related Events</h4>
|
279 |
+
<ul>
|
280 |
+
{''.join(f'<li>{event["text"]} ({event["timestamp"]}) - Confidence: {int(event["confidence"] * 100)}%</li>' for event in analysis_result['related_events'])}
|
281 |
+
</ul>
|
282 |
+
</div>
|
283 |
+
''' if analysis_result.get('related_events') else ''}
|
284 |
</div>
|
285 |
"""
|
286 |
return html
|
287 |
|
288 |
+
async def process_input(text):
|
289 |
+
result = await analyzer.analyze_event(text)
|
290 |
+
return format_results(result)
|
291 |
+
|
292 |
demo = gr.Interface(
|
293 |
+
fn=process_input,
|
294 |
inputs=[
|
295 |
gr.Textbox(
|
296 |
label="Event Text",
|
297 |
+
placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech')",
|
298 |
lines=3
|
299 |
)
|
300 |
],
|
301 |
outputs=gr.HTML(),
|
302 |
title="DoD Event Analysis System",
|
303 |
+
description="Analyze text to extract entities, assess confidence, and identify key event information with relationship tracking.",
|
304 |
css=css,
|
305 |
theme=gr.themes.Soft(),
|
306 |
examples=[
|
307 |
+
["John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech"],
|
308 |
+
["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA on June 15th #defense #training"],
|
309 |
+
["Team meeting at headquarters with @commander_smith at 0900 #briefing"]
|
310 |
]
|
311 |
)
|
312 |
|