File size: 11,883 Bytes
c0a677b
 
 
4088373
 
 
 
 
c0a677b
4088373
c0a677b
4088373
c0a677b
4088373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a677b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4088373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a677b
4088373
c0a677b
4088373
c0a677b
 
 
 
 
 
4088373
c0a677b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4088373
 
 
 
 
c0a677b
 
 
 
 
 
 
 
 
 
4088373
 
 
 
 
 
 
 
 
c0a677b
 
 
 
4088373
 
 
 
c0a677b
4088373
c0a677b
 
 
4088373
c0a677b
 
 
 
 
4088373
c0a677b
 
 
4088373
 
 
c0a677b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
from transformers import pipeline
import json
from datetime import datetime
import sqlite3
import asyncio
from concurrent.futures import ThreadPoolExecutor
import re

# Initialize NLP pipelines
ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
classifier = pipeline("zero-shot-classification")

class OntologyRegistry:
    def __init__(self):
        self.temporal_patterns = [
            r'\b\d{1,2}:\d{2}\s*(?:AM|PM|am|pm)?\b',
            r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2}(?:st|nd|rd|th)?,? \d{4}\b',
            r'\btomorrow\b',
            r'\bin \d+ (?:days?|weeks?|months?)\b'
        ]
        
        self.location_patterns = [
            r'\b(?:in|at|from|to) ([A-Z][a-zA-Z]+(,? [A-Z]{2})?)\b',
            r'\b[A-Z][a-zA-Z]+ Base\b',
            r'\bHeadquarters\b',
            r'\bHQ\b'
        ]
        
        self.entity_types = {
            'PER': 'person',
            'ORG': 'organization',
            'LOC': 'location',
            'MISC': 'miscellaneous'
        }

    def validate_pattern(self, text, pattern_type):
        patterns = getattr(self, f"{pattern_type}_patterns", [])
        matches = []
        for pattern in patterns:
            matches.extend(re.finditer(pattern, text))
        return [m.group() for m in matches]

class RelationshipEngine:
    def __init__(self, db_path=':memory:'):
        self.conn = sqlite3.connect(db_path)
        self.setup_database()

    def setup_database(self):
        self.conn.execute('''
            CREATE TABLE IF NOT EXISTS events (
                id INTEGER PRIMARY KEY,
                text TEXT,
                timestamp DATETIME,
                confidence REAL
            )
        ''')
        
        self.conn.execute('''
            CREATE TABLE IF NOT EXISTS relationships (
                id INTEGER PRIMARY KEY,
                source_event_id INTEGER,
                target_event_id INTEGER,
                relationship_type TEXT,
                confidence REAL,
                FOREIGN KEY (source_event_id) REFERENCES events(id),
                FOREIGN KEY (target_event_id) REFERENCES events(id)
            )
        ''')
        self.conn.commit()

    def find_related_events(self, event_data):
        # Find events with similar entities
        cursor = self.conn.execute('''
            SELECT * FROM events 
            WHERE text LIKE ? 
            ORDER BY timestamp DESC 
            LIMIT 5
        ''', (f"%{event_data.get('text', '')}%",))
        
        related_events = cursor.fetchall()
        return related_events

    def calculate_relationship_confidence(self, event1, event2):
        # Simple similarity-based confidence
        base_confidence = 0.0
        
        # Entity overlap increases confidence
        if set(event1.get('entities', {}).get('people', [])) & set(event2.get('entities', {}).get('people', [])):
            base_confidence += 0.3
            
        if set(event1.get('entities', {}).get('organizations', [])) & set(event2.get('entities', {}).get('organizations', [])):
            base_confidence += 0.3
            
        if set(event1.get('entities', {}).get('locations', [])) & set(event2.get('entities', {}).get('locations', [])):
            base_confidence += 0.4
            
        return min(base_confidence, 1.0)

class EventAnalyzer:
    def __init__(self):
        self.ontology = OntologyRegistry()
        self.relationship_engine = RelationshipEngine()
        self.executor = ThreadPoolExecutor(max_workers=3)

    async def extract_entities(self, text):
        def _extract():
            return ner_pipeline(text)
        
        # Run NER in thread pool
        ner_results = await asyncio.get_event_loop().run_in_executor(
            self.executor, _extract
        )
        
        entities = {
            "people": [],
            "organizations": [],
            "locations": [],
            "hashtags": [word for word in text.split() if word.startswith('#')]
        }
        
        for item in ner_results:
            if item["entity"].endswith("PER"):
                entities["people"].append(item["word"])
            elif item["entity"].endswith("ORG"):
                entities["organizations"].append(item["word"])
            elif item["entity"].endswith("LOC"):
                entities["locations"].append(item["word"])
                
        return entities

    async def extract_temporal(self, text):
        return self.ontology.validate_pattern(text, 'temporal')

    async def extract_locations(self, text):
        ml_locations = [loc for loc in await self.extract_entities(text).get('locations', [])]
        pattern_locations = self.ontology.validate_pattern(text, 'location')
        return list(set(ml_locations + pattern_locations))

    async def analyze_event(self, text):
        try:
            # Parallel extraction
            entities_task = self.extract_entities(text)
            temporal_task = self.extract_temporal(text)
            locations_task = self.extract_locations(text)
            
            # Gather results
            entities, temporal, locations = await asyncio.gather(
                entities_task, temporal_task, locations_task
            )
            
            # Merge location results
            entities['locations'] = locations
            entities['temporal'] = temporal
            
            # Calculate initial confidence
            confidence = min(1.0, (
                0.2 * bool(entities["people"]) +
                0.2 * bool(entities["organizations"]) +
                0.3 * bool(entities["locations"]) +
                0.3 * bool(temporal)
            ))
            
            # Find related events
            related_events = self.relationship_engine.find_related_events({
                'text': text,
                'entities': entities
            })
            
            # Adjust confidence based on relationships
            if related_events:
                relationship_confidence = max(
                    self.relationship_engine.calculate_relationship_confidence(
                        {'entities': entities}, 
                        {'text': event[1]} # event[1] is the text field
                    )
                    for event in related_events
                )
                confidence = (confidence + relationship_confidence) / 2
            
            result = {
                "text": text,
                "entities": entities,
                "confidence": confidence,
                "verification_needed": confidence < 0.6,
                "related_events": [
                    {
                        "text": event[1],
                        "timestamp": event[2],
                        "confidence": event[3]
                    }
                    for event in related_events
                ]
            }
            
            # Store event if confidence is sufficient
            if confidence >= 0.6:
                self.relationship_engine.conn.execute(
                    'INSERT INTO events (text, timestamp, confidence) VALUES (?, ?, ?)',
                    (text, datetime.now().isoformat(), confidence)
                )
                self.relationship_engine.conn.commit()
            
            return result
            
        except Exception as e:
            return {"error": str(e)}

# Initialize analyzer
analyzer = EventAnalyzer()

# Custom CSS for UI
css = """
.container { max-width: 1200px; margin: auto; padding: 20px; }
.results { padding: 20px; border: 1px solid #ddd; border-radius: 8px; margin-top: 20px; }
.confidence-high { color: #22c55e; font-weight: bold; }
.confidence-low { color: #f97316; font-weight: bold; }
.entity-section { margin: 15px 0; }
.alert-warning { background: #fff3cd; padding: 10px; border-radius: 5px; margin: 10px 0; }
.alert-success { background: #d1fae5; padding: 10px; border-radius: 5px; margin: 10px 0; }
.related-events { background: #f3f4f6; padding: 15px; border-radius: 5px; margin-top: 15px; }
"""

def format_results(analysis_result):
    if "error" in analysis_result:
        return f"<div style='color: red'>Error: {analysis_result['error']}</div>"
    
    confidence_class = "confidence-high" if analysis_result["confidence"] >= 0.6 else "confidence-low"
    
    html = f"""
    <div class="results">
        <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px;">
            <h3 style="margin: 0;">Analysis Results</h3>
            <div>
                Confidence Score: <span class="{confidence_class}">{int(analysis_result['confidence'] * 100)}%</span>
            </div>
        </div>
        
        {f'''
        <div class="alert-warning">
            ⚠️ <strong>Verification Required:</strong> Low confidence score detected. Please verify the extracted information.
        </div>
        ''' if analysis_result["verification_needed"] else ''}
        
        <div class="entity-section">
            <h4>πŸ‘€ People Detected</h4>
            <ul>{''.join(f'<li>{person}</li>' for person in analysis_result['entities']['people']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4>🏒 Organizations</h4>
            <ul>{''.join(f'<li>{org}</li>' for org in analysis_result['entities']['organizations']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4>πŸ“ Locations</h4>
            <ul>{''.join(f'<li>{loc}</li>' for loc in analysis_result['entities']['locations']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4>πŸ•’ Temporal References</h4>
            <ul>{''.join(f'<li>{time}</li>' for time in analysis_result['entities']['temporal']) or '<li>None detected</li>'}</ul>
        </div>
        
        <div class="entity-section">
            <h4># Hashtags</h4>
            <ul>{''.join(f'<li>{tag}</li>' for tag in analysis_result['entities']['hashtags']) or '<li>None detected</li>'}</ul>
        </div>
        
        {f'''
        <div class="alert-success">
            βœ… <strong>Event Validated:</strong> The extracted information meets confidence thresholds.
        </div>
        ''' if not analysis_result["verification_needed"] else ''}
        
        {f'''
        <div class="related-events">
            <h4>Related Events</h4>
            <ul>
                {''.join(f'<li>{event["text"]} ({event["timestamp"]}) - Confidence: {int(event["confidence"] * 100)}%</li>' for event in analysis_result['related_events'])}
            </ul>
        </div>
        ''' if analysis_result.get('related_events') else ''}
    </div>
    """
    return html

async def process_input(text):
    result = await analyzer.analyze_event(text)
    return format_results(result)

demo = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(
            label="Event Text",
            placeholder="Enter text to analyze (e.g., 'John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech')",
            lines=3
        )
    ],
    outputs=gr.HTML(),
    title="DoD Event Analysis System",
    description="Analyze text to extract entities, assess confidence, and identify key event information with relationship tracking.",
    css=css,
    theme=gr.themes.Soft(),
    examples=[
        ["John from Tech Corp. is attending the meeting in Washington, DC tomorrow at 14:30 #tech"],
        ["Sarah Johnson and Mike Smith from Defense Systems Inc. are conducting training in Norfolk, VA on June 15th #defense #training"],
        ["Team meeting at headquarters with @commander_smith at 0900 #briefing"]
    ]
)

if __name__ == "__main__":
    demo.launch()