dfe / app.py
dgrant6's picture
Upload 3 files
535c788 verified
raw
history blame
7.74 kB
import gradio as gr
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
from PIL import Image
import numpy as np
import warnings
from typing import Tuple, List, Dict
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import io
warnings.filterwarnings("ignore")
# Device configuration
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load models
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
checkpoint = torch.load("df_model.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
def predict_frame(frame: np.ndarray) -> Tuple[str, np.ndarray, Dict[str, float]]:
"""Predict whether the input frame contains a real or fake face"""
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_pil = Image.fromarray(frame)
face = mtcnn(frame_pil)
if face is None:
return None, None, None # No face detected
# Preprocess the face
face = F.interpolate(face.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
face = face.to(DEVICE, dtype=torch.float32) / 255.0
# Predict
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
fake_confidence = output.item()
real_confidence = 1 - fake_confidence
prediction = "real" if real_confidence > fake_confidence else "fake"
confidences = {
'real': real_confidence,
'fake': fake_confidence
}
# Visualize
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=torch.cuda.is_available())
targets = [ClassifierOutputTarget(0)]
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
face_np = face.squeeze(0).permute(1, 2, 0).cpu().numpy()
visualization = show_cam_on_image(face_np, grayscale_cam, use_rgb=True)
face_with_mask = cv2.addWeighted((face_np * 255).astype(np.uint8), 1, (visualization * 255).astype(np.uint8), 0.5, 0)
return prediction, face_with_mask, confidences
def predict_video(input_video: str) -> Tuple[str, np.ndarray, Dict[str, List[float]], List[np.ndarray]]:
cap = cv2.VideoCapture(input_video)
frames = []
predictions = []
confidences_real = []
confidences_fake = []
frame_count = 0
skip_frames = 20
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % skip_frames != 0:
continue
prediction, frame_with_mask, confidence = predict_frame(frame)
if prediction is None:
continue
frames.append(frame_with_mask)
predictions.append(prediction)
confidences_real.append(confidence['real'])
confidences_fake.append(confidence['fake'])
cap.release()
# Determine the final prediction based on the average confidence
avg_real_confidence = sum(confidences_real) / len(confidences_real)
avg_fake_confidence = sum(confidences_fake) / len(confidences_fake)
final_prediction = 'real' if avg_real_confidence > avg_fake_confidence else 'fake'
final_confidence = max(avg_real_confidence, avg_fake_confidence)
# Create an animated summary plot
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
def animate(i):
ax1.clear()
ax2.clear()
# Confidence over time
ax1.plot(confidences_real[:i+1], label='Real', color='green')
ax1.plot(confidences_fake[:i+1], label='Fake', color='red')
ax1.set_title('Confidence Scores Over Time')
ax1.set_xlabel('Frame')
ax1.set_ylabel('Confidence')
ax1.legend()
ax1.grid(True)
ax1.set_ylim(0, 1)
# Prediction distribution
labels, counts = np.unique(predictions[:i+1], return_counts=True)
ax2.bar(labels, counts, color=['green', 'red'])
ax2.set_title('Distribution of Predictions')
ax2.set_xlabel('Prediction')
ax2.set_ylabel('Count')
ax2.set_ylim(0, len(predictions))
plt.tight_layout()
anim = FuncAnimation(fig, animate, frames=len(confidences_real), repeat=False)
# Save the animation as a gif
buf = io.BytesIO()
anim.save(buf, writer='pillow', fps=5)
buf.seek(0)
summary_plot = Image.open(buf)
return final_prediction, final_confidence, summary_plot, {
'real': confidences_real,
'fake': confidences_fake
}, frames
# Custom CSS for a more appealing interface
custom_css = """
#output-container {
display: flex;
justify-content: center;
align-items: center;
flex-direction: column;
}
#confidence-label {
font-size: 24px;
font-weight: bold;
margin-bottom: 10px;
}
#confidence-bar {
width: 100%;
height: 30px;
background-color: #f0f0f0;
border-radius: 15px;
overflow: hidden;
}
#confidence-fill {
height: 100%;
background-color: #4CAF50;
transition: width 0.5s ease-in-out;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ•΅οΈβ€β™‚οΈ DeepFake Video Detective 🎭")
gr.Markdown("Upload a video to determine if it's real or a deepfake. Our AI will analyze it frame by frame!")
with gr.Row():
input_video = gr.Video(label="πŸ“Ή Upload Your Video")
with gr.Row():
submit_btn = gr.Button("πŸ” Analyze Video", variant="primary")
with gr.Row():
with gr.Column():
output_label = gr.Label(label="🏷️ Prediction")
confidence_output = gr.HTML(
"""
<div id="output-container">
<div id="confidence-label">Confidence: 0%</div>
<div id="confidence-bar">
<div id="confidence-fill" style="width: 0%;"></div>
</div>
</div>
"""
)
summary_plot = gr.Image(label="πŸ“Š Analysis Summary")
with gr.Row():
output_video = gr.Video(label="🎞️ Processed Video")
def update_confidence(prediction, confidence):
color = "#4CAF50" if prediction == "real" else "#FF5722"
return f"""
<div id="output-container">
<div id="confidence-label">Confidence: {confidence:.2%}</div>
<div id="confidence-bar">
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
</div>
</div>
"""
def process_video(video):
prediction, confidence, summary, _, frames = predict_video(video)
processed_video = np.stack(frames, axis=0)
confidence_html = update_confidence(prediction, confidence)
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary, output_video: processed_video}
submit_btn.click(
process_video,
inputs=[input_video],
outputs=[output_label, confidence_output, summary_plot, output_video]
)
demo.launch()