|
import gradio as gr
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from facenet_pytorch import MTCNN, InceptionResnetV1
|
|
import cv2
|
|
from pytorch_grad_cam import GradCAM
|
|
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
|
from pytorch_grad_cam.utils.image import show_cam_on_image
|
|
from PIL import Image
|
|
import numpy as np
|
|
import warnings
|
|
from typing import Tuple, List, Dict
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.animation import FuncAnimation
|
|
import io
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
|
|
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
|
|
|
|
checkpoint = torch.load("df_model.pth", map_location=torch.device('cpu'))
|
|
model.load_state_dict(checkpoint['model_state_dict'])
|
|
model.to(DEVICE)
|
|
model.eval()
|
|
|
|
def predict_frame(frame: np.ndarray) -> Tuple[str, np.ndarray, Dict[str, float]]:
|
|
"""Predict whether the input frame contains a real or fake face"""
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
frame_pil = Image.fromarray(frame)
|
|
|
|
face = mtcnn(frame_pil)
|
|
if face is None:
|
|
return None, None, None
|
|
|
|
|
|
face = F.interpolate(face.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
|
|
face = face.to(DEVICE, dtype=torch.float32) / 255.0
|
|
|
|
|
|
with torch.no_grad():
|
|
output = torch.sigmoid(model(face).squeeze(0))
|
|
fake_confidence = output.item()
|
|
real_confidence = 1 - fake_confidence
|
|
prediction = "real" if real_confidence > fake_confidence else "fake"
|
|
|
|
confidences = {
|
|
'real': real_confidence,
|
|
'fake': fake_confidence
|
|
}
|
|
|
|
|
|
target_layers = [model.block8.branch1[-1]]
|
|
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=torch.cuda.is_available())
|
|
targets = [ClassifierOutputTarget(0)]
|
|
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
|
grayscale_cam = grayscale_cam[0, :]
|
|
face_np = face.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
|
visualization = show_cam_on_image(face_np, grayscale_cam, use_rgb=True)
|
|
face_with_mask = cv2.addWeighted((face_np * 255).astype(np.uint8), 1, (visualization * 255).astype(np.uint8), 0.5, 0)
|
|
|
|
return prediction, face_with_mask, confidences
|
|
|
|
def predict_video(input_video: str) -> Tuple[str, np.ndarray, Dict[str, List[float]], List[np.ndarray]]:
|
|
cap = cv2.VideoCapture(input_video)
|
|
|
|
frames = []
|
|
predictions = []
|
|
confidences_real = []
|
|
confidences_fake = []
|
|
frame_count = 0
|
|
skip_frames = 20
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
frame_count += 1
|
|
if frame_count % skip_frames != 0:
|
|
continue
|
|
|
|
prediction, frame_with_mask, confidence = predict_frame(frame)
|
|
if prediction is None:
|
|
continue
|
|
|
|
frames.append(frame_with_mask)
|
|
predictions.append(prediction)
|
|
confidences_real.append(confidence['real'])
|
|
confidences_fake.append(confidence['fake'])
|
|
|
|
cap.release()
|
|
|
|
|
|
avg_real_confidence = sum(confidences_real) / len(confidences_real)
|
|
avg_fake_confidence = sum(confidences_fake) / len(confidences_fake)
|
|
final_prediction = 'real' if avg_real_confidence > avg_fake_confidence else 'fake'
|
|
final_confidence = max(avg_real_confidence, avg_fake_confidence)
|
|
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
|
|
|
|
def animate(i):
|
|
ax1.clear()
|
|
ax2.clear()
|
|
|
|
|
|
ax1.plot(confidences_real[:i+1], label='Real', color='green')
|
|
ax1.plot(confidences_fake[:i+1], label='Fake', color='red')
|
|
ax1.set_title('Confidence Scores Over Time')
|
|
ax1.set_xlabel('Frame')
|
|
ax1.set_ylabel('Confidence')
|
|
ax1.legend()
|
|
ax1.grid(True)
|
|
ax1.set_ylim(0, 1)
|
|
|
|
|
|
labels, counts = np.unique(predictions[:i+1], return_counts=True)
|
|
ax2.bar(labels, counts, color=['green', 'red'])
|
|
ax2.set_title('Distribution of Predictions')
|
|
ax2.set_xlabel('Prediction')
|
|
ax2.set_ylabel('Count')
|
|
ax2.set_ylim(0, len(predictions))
|
|
|
|
plt.tight_layout()
|
|
|
|
anim = FuncAnimation(fig, animate, frames=len(confidences_real), repeat=False)
|
|
|
|
|
|
buf = io.BytesIO()
|
|
anim.save(buf, writer='pillow', fps=5)
|
|
buf.seek(0)
|
|
summary_plot = Image.open(buf)
|
|
|
|
return final_prediction, final_confidence, summary_plot, {
|
|
'real': confidences_real,
|
|
'fake': confidences_fake
|
|
}, frames
|
|
|
|
|
|
custom_css = """
|
|
#output-container {
|
|
display: flex;
|
|
justify-content: center;
|
|
align-items: center;
|
|
flex-direction: column;
|
|
}
|
|
#confidence-label {
|
|
font-size: 24px;
|
|
font-weight: bold;
|
|
margin-bottom: 10px;
|
|
}
|
|
#confidence-bar {
|
|
width: 100%;
|
|
height: 30px;
|
|
background-color: #f0f0f0;
|
|
border-radius: 15px;
|
|
overflow: hidden;
|
|
}
|
|
#confidence-fill {
|
|
height: 100%;
|
|
background-color: #4CAF50;
|
|
transition: width 0.5s ease-in-out;
|
|
}
|
|
"""
|
|
|
|
|
|
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
gr.Markdown("# π΅οΈββοΈ DeepFake Video Detective π")
|
|
gr.Markdown("Upload a video to determine if it's real or a deepfake. Our AI will analyze it frame by frame!")
|
|
|
|
with gr.Row():
|
|
input_video = gr.Video(label="πΉ Upload Your Video")
|
|
|
|
with gr.Row():
|
|
submit_btn = gr.Button("π Analyze Video", variant="primary")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
output_label = gr.Label(label="π·οΈ Prediction")
|
|
confidence_output = gr.HTML(
|
|
"""
|
|
<div id="output-container">
|
|
<div id="confidence-label">Confidence: 0%</div>
|
|
<div id="confidence-bar">
|
|
<div id="confidence-fill" style="width: 0%;"></div>
|
|
</div>
|
|
</div>
|
|
"""
|
|
)
|
|
summary_plot = gr.Image(label="π Analysis Summary")
|
|
|
|
with gr.Row():
|
|
output_video = gr.Video(label="ποΈ Processed Video")
|
|
|
|
def update_confidence(prediction, confidence):
|
|
color = "#4CAF50" if prediction == "real" else "#FF5722"
|
|
return f"""
|
|
<div id="output-container">
|
|
<div id="confidence-label">Confidence: {confidence:.2%}</div>
|
|
<div id="confidence-bar">
|
|
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
|
|
</div>
|
|
</div>
|
|
"""
|
|
|
|
def process_video(video):
|
|
prediction, confidence, summary, _, frames = predict_video(video)
|
|
processed_video = np.stack(frames, axis=0)
|
|
confidence_html = update_confidence(prediction, confidence)
|
|
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary, output_video: processed_video}
|
|
|
|
submit_btn.click(
|
|
process_video,
|
|
inputs=[input_video],
|
|
outputs=[output_label, confidence_output, summary_plot, output_video]
|
|
)
|
|
|
|
demo.launch() |