File size: 7,740 Bytes
535c788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
from PIL import Image
import numpy as np
import warnings
from typing import Tuple, List, Dict
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import io
warnings.filterwarnings("ignore")
# Device configuration
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load models
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
checkpoint = torch.load("df_model.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
def predict_frame(frame: np.ndarray) -> Tuple[str, np.ndarray, Dict[str, float]]:
"""Predict whether the input frame contains a real or fake face"""
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_pil = Image.fromarray(frame)
face = mtcnn(frame_pil)
if face is None:
return None, None, None # No face detected
# Preprocess the face
face = F.interpolate(face.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
face = face.to(DEVICE, dtype=torch.float32) / 255.0
# Predict
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
fake_confidence = output.item()
real_confidence = 1 - fake_confidence
prediction = "real" if real_confidence > fake_confidence else "fake"
confidences = {
'real': real_confidence,
'fake': fake_confidence
}
# Visualize
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=torch.cuda.is_available())
targets = [ClassifierOutputTarget(0)]
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
face_np = face.squeeze(0).permute(1, 2, 0).cpu().numpy()
visualization = show_cam_on_image(face_np, grayscale_cam, use_rgb=True)
face_with_mask = cv2.addWeighted((face_np * 255).astype(np.uint8), 1, (visualization * 255).astype(np.uint8), 0.5, 0)
return prediction, face_with_mask, confidences
def predict_video(input_video: str) -> Tuple[str, np.ndarray, Dict[str, List[float]], List[np.ndarray]]:
cap = cv2.VideoCapture(input_video)
frames = []
predictions = []
confidences_real = []
confidences_fake = []
frame_count = 0
skip_frames = 20
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % skip_frames != 0:
continue
prediction, frame_with_mask, confidence = predict_frame(frame)
if prediction is None:
continue
frames.append(frame_with_mask)
predictions.append(prediction)
confidences_real.append(confidence['real'])
confidences_fake.append(confidence['fake'])
cap.release()
# Determine the final prediction based on the average confidence
avg_real_confidence = sum(confidences_real) / len(confidences_real)
avg_fake_confidence = sum(confidences_fake) / len(confidences_fake)
final_prediction = 'real' if avg_real_confidence > avg_fake_confidence else 'fake'
final_confidence = max(avg_real_confidence, avg_fake_confidence)
# Create an animated summary plot
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
def animate(i):
ax1.clear()
ax2.clear()
# Confidence over time
ax1.plot(confidences_real[:i+1], label='Real', color='green')
ax1.plot(confidences_fake[:i+1], label='Fake', color='red')
ax1.set_title('Confidence Scores Over Time')
ax1.set_xlabel('Frame')
ax1.set_ylabel('Confidence')
ax1.legend()
ax1.grid(True)
ax1.set_ylim(0, 1)
# Prediction distribution
labels, counts = np.unique(predictions[:i+1], return_counts=True)
ax2.bar(labels, counts, color=['green', 'red'])
ax2.set_title('Distribution of Predictions')
ax2.set_xlabel('Prediction')
ax2.set_ylabel('Count')
ax2.set_ylim(0, len(predictions))
plt.tight_layout()
anim = FuncAnimation(fig, animate, frames=len(confidences_real), repeat=False)
# Save the animation as a gif
buf = io.BytesIO()
anim.save(buf, writer='pillow', fps=5)
buf.seek(0)
summary_plot = Image.open(buf)
return final_prediction, final_confidence, summary_plot, {
'real': confidences_real,
'fake': confidences_fake
}, frames
# Custom CSS for a more appealing interface
custom_css = """
#output-container {
display: flex;
justify-content: center;
align-items: center;
flex-direction: column;
}
#confidence-label {
font-size: 24px;
font-weight: bold;
margin-bottom: 10px;
}
#confidence-bar {
width: 100%;
height: 30px;
background-color: #f0f0f0;
border-radius: 15px;
overflow: hidden;
}
#confidence-fill {
height: 100%;
background-color: #4CAF50;
transition: width 0.5s ease-in-out;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# π΅οΈββοΈ DeepFake Video Detective π")
gr.Markdown("Upload a video to determine if it's real or a deepfake. Our AI will analyze it frame by frame!")
with gr.Row():
input_video = gr.Video(label="πΉ Upload Your Video")
with gr.Row():
submit_btn = gr.Button("π Analyze Video", variant="primary")
with gr.Row():
with gr.Column():
output_label = gr.Label(label="π·οΈ Prediction")
confidence_output = gr.HTML(
"""
<div id="output-container">
<div id="confidence-label">Confidence: 0%</div>
<div id="confidence-bar">
<div id="confidence-fill" style="width: 0%;"></div>
</div>
</div>
"""
)
summary_plot = gr.Image(label="π Analysis Summary")
with gr.Row():
output_video = gr.Video(label="ποΈ Processed Video")
def update_confidence(prediction, confidence):
color = "#4CAF50" if prediction == "real" else "#FF5722"
return f"""
<div id="output-container">
<div id="confidence-label">Confidence: {confidence:.2%}</div>
<div id="confidence-bar">
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
</div>
</div>
"""
def process_video(video):
prediction, confidence, summary, _, frames = predict_video(video)
processed_video = np.stack(frames, axis=0)
confidence_html = update_confidence(prediction, confidence)
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary, output_video: processed_video}
submit_btn.click(
process_video,
inputs=[input_video],
outputs=[output_label, confidence_output, summary_plot, output_video]
)
demo.launch() |