Upload 3 files
Browse files- app.py +222 -0
- df_model.pth +3 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
5 |
+
import cv2
|
6 |
+
from pytorch_grad_cam import GradCAM
|
7 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
import warnings
|
12 |
+
from typing import Tuple, List, Dict
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
from matplotlib.animation import FuncAnimation
|
15 |
+
import io
|
16 |
+
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
# Device configuration
|
20 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
21 |
+
|
22 |
+
# Load models
|
23 |
+
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
|
24 |
+
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
|
25 |
+
|
26 |
+
checkpoint = torch.load("df_model.pth", map_location=torch.device('cpu'))
|
27 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
28 |
+
model.to(DEVICE)
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
def predict_frame(frame: np.ndarray) -> Tuple[str, np.ndarray, Dict[str, float]]:
|
32 |
+
"""Predict whether the input frame contains a real or fake face"""
|
33 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
34 |
+
frame_pil = Image.fromarray(frame)
|
35 |
+
|
36 |
+
face = mtcnn(frame_pil)
|
37 |
+
if face is None:
|
38 |
+
return None, None, None # No face detected
|
39 |
+
|
40 |
+
# Preprocess the face
|
41 |
+
face = F.interpolate(face.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
|
42 |
+
face = face.to(DEVICE, dtype=torch.float32) / 255.0
|
43 |
+
|
44 |
+
# Predict
|
45 |
+
with torch.no_grad():
|
46 |
+
output = torch.sigmoid(model(face).squeeze(0))
|
47 |
+
fake_confidence = output.item()
|
48 |
+
real_confidence = 1 - fake_confidence
|
49 |
+
prediction = "real" if real_confidence > fake_confidence else "fake"
|
50 |
+
|
51 |
+
confidences = {
|
52 |
+
'real': real_confidence,
|
53 |
+
'fake': fake_confidence
|
54 |
+
}
|
55 |
+
|
56 |
+
# Visualize
|
57 |
+
target_layers = [model.block8.branch1[-1]]
|
58 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=torch.cuda.is_available())
|
59 |
+
targets = [ClassifierOutputTarget(0)]
|
60 |
+
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
61 |
+
grayscale_cam = grayscale_cam[0, :]
|
62 |
+
face_np = face.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
63 |
+
visualization = show_cam_on_image(face_np, grayscale_cam, use_rgb=True)
|
64 |
+
face_with_mask = cv2.addWeighted((face_np * 255).astype(np.uint8), 1, (visualization * 255).astype(np.uint8), 0.5, 0)
|
65 |
+
|
66 |
+
return prediction, face_with_mask, confidences
|
67 |
+
|
68 |
+
def predict_video(input_video: str) -> Tuple[str, np.ndarray, Dict[str, List[float]], List[np.ndarray]]:
|
69 |
+
cap = cv2.VideoCapture(input_video)
|
70 |
+
|
71 |
+
frames = []
|
72 |
+
predictions = []
|
73 |
+
confidences_real = []
|
74 |
+
confidences_fake = []
|
75 |
+
frame_count = 0
|
76 |
+
skip_frames = 20
|
77 |
+
|
78 |
+
while True:
|
79 |
+
ret, frame = cap.read()
|
80 |
+
if not ret:
|
81 |
+
break
|
82 |
+
frame_count += 1
|
83 |
+
if frame_count % skip_frames != 0:
|
84 |
+
continue
|
85 |
+
|
86 |
+
prediction, frame_with_mask, confidence = predict_frame(frame)
|
87 |
+
if prediction is None:
|
88 |
+
continue
|
89 |
+
|
90 |
+
frames.append(frame_with_mask)
|
91 |
+
predictions.append(prediction)
|
92 |
+
confidences_real.append(confidence['real'])
|
93 |
+
confidences_fake.append(confidence['fake'])
|
94 |
+
|
95 |
+
cap.release()
|
96 |
+
|
97 |
+
# Determine the final prediction based on the average confidence
|
98 |
+
avg_real_confidence = sum(confidences_real) / len(confidences_real)
|
99 |
+
avg_fake_confidence = sum(confidences_fake) / len(confidences_fake)
|
100 |
+
final_prediction = 'real' if avg_real_confidence > avg_fake_confidence else 'fake'
|
101 |
+
final_confidence = max(avg_real_confidence, avg_fake_confidence)
|
102 |
+
|
103 |
+
# Create an animated summary plot
|
104 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
|
105 |
+
|
106 |
+
def animate(i):
|
107 |
+
ax1.clear()
|
108 |
+
ax2.clear()
|
109 |
+
|
110 |
+
# Confidence over time
|
111 |
+
ax1.plot(confidences_real[:i+1], label='Real', color='green')
|
112 |
+
ax1.plot(confidences_fake[:i+1], label='Fake', color='red')
|
113 |
+
ax1.set_title('Confidence Scores Over Time')
|
114 |
+
ax1.set_xlabel('Frame')
|
115 |
+
ax1.set_ylabel('Confidence')
|
116 |
+
ax1.legend()
|
117 |
+
ax1.grid(True)
|
118 |
+
ax1.set_ylim(0, 1)
|
119 |
+
|
120 |
+
# Prediction distribution
|
121 |
+
labels, counts = np.unique(predictions[:i+1], return_counts=True)
|
122 |
+
ax2.bar(labels, counts, color=['green', 'red'])
|
123 |
+
ax2.set_title('Distribution of Predictions')
|
124 |
+
ax2.set_xlabel('Prediction')
|
125 |
+
ax2.set_ylabel('Count')
|
126 |
+
ax2.set_ylim(0, len(predictions))
|
127 |
+
|
128 |
+
plt.tight_layout()
|
129 |
+
|
130 |
+
anim = FuncAnimation(fig, animate, frames=len(confidences_real), repeat=False)
|
131 |
+
|
132 |
+
# Save the animation as a gif
|
133 |
+
buf = io.BytesIO()
|
134 |
+
anim.save(buf, writer='pillow', fps=5)
|
135 |
+
buf.seek(0)
|
136 |
+
summary_plot = Image.open(buf)
|
137 |
+
|
138 |
+
return final_prediction, final_confidence, summary_plot, {
|
139 |
+
'real': confidences_real,
|
140 |
+
'fake': confidences_fake
|
141 |
+
}, frames
|
142 |
+
|
143 |
+
# Custom CSS for a more appealing interface
|
144 |
+
custom_css = """
|
145 |
+
#output-container {
|
146 |
+
display: flex;
|
147 |
+
justify-content: center;
|
148 |
+
align-items: center;
|
149 |
+
flex-direction: column;
|
150 |
+
}
|
151 |
+
#confidence-label {
|
152 |
+
font-size: 24px;
|
153 |
+
font-weight: bold;
|
154 |
+
margin-bottom: 10px;
|
155 |
+
}
|
156 |
+
#confidence-bar {
|
157 |
+
width: 100%;
|
158 |
+
height: 30px;
|
159 |
+
background-color: #f0f0f0;
|
160 |
+
border-radius: 15px;
|
161 |
+
overflow: hidden;
|
162 |
+
}
|
163 |
+
#confidence-fill {
|
164 |
+
height: 100%;
|
165 |
+
background-color: #4CAF50;
|
166 |
+
transition: width 0.5s ease-in-out;
|
167 |
+
}
|
168 |
+
"""
|
169 |
+
|
170 |
+
# Gradio Interface
|
171 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
172 |
+
gr.Markdown("# π΅οΈββοΈ DeepFake Video Detective π")
|
173 |
+
gr.Markdown("Upload a video to determine if it's real or a deepfake. Our AI will analyze it frame by frame!")
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
input_video = gr.Video(label="πΉ Upload Your Video")
|
177 |
+
|
178 |
+
with gr.Row():
|
179 |
+
submit_btn = gr.Button("π Analyze Video", variant="primary")
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
output_label = gr.Label(label="π·οΈ Prediction")
|
184 |
+
confidence_output = gr.HTML(
|
185 |
+
"""
|
186 |
+
<div id="output-container">
|
187 |
+
<div id="confidence-label">Confidence: 0%</div>
|
188 |
+
<div id="confidence-bar">
|
189 |
+
<div id="confidence-fill" style="width: 0%;"></div>
|
190 |
+
</div>
|
191 |
+
</div>
|
192 |
+
"""
|
193 |
+
)
|
194 |
+
summary_plot = gr.Image(label="π Analysis Summary")
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
output_video = gr.Video(label="ποΈ Processed Video")
|
198 |
+
|
199 |
+
def update_confidence(prediction, confidence):
|
200 |
+
color = "#4CAF50" if prediction == "real" else "#FF5722"
|
201 |
+
return f"""
|
202 |
+
<div id="output-container">
|
203 |
+
<div id="confidence-label">Confidence: {confidence:.2%}</div>
|
204 |
+
<div id="confidence-bar">
|
205 |
+
<div id="confidence-fill" style="width: {confidence:.2%}; background-color: {color};"></div>
|
206 |
+
</div>
|
207 |
+
</div>
|
208 |
+
"""
|
209 |
+
|
210 |
+
def process_video(video):
|
211 |
+
prediction, confidence, summary, _, frames = predict_video(video)
|
212 |
+
processed_video = np.stack(frames, axis=0)
|
213 |
+
confidence_html = update_confidence(prediction, confidence)
|
214 |
+
return {output_label: prediction, confidence_output: confidence_html, summary_plot: summary, output_video: processed_video}
|
215 |
+
|
216 |
+
submit_btn.click(
|
217 |
+
process_video,
|
218 |
+
inputs=[input_video],
|
219 |
+
outputs=[output_label, confidence_output, summary_plot, output_video]
|
220 |
+
)
|
221 |
+
|
222 |
+
demo.launch()
|
df_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:794ebe83c6a7d7959c30c175030b4885e2b9fa175f1cc3e582236595d119f52b
|
3 |
+
size 282395989
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jupyter==1.0.0
|
2 |
+
gradio==3.35.2
|
3 |
+
Pillow==9.5.0
|
4 |
+
facenet-pytorch==2.5.3
|
5 |
+
torch==2.0.1
|
6 |
+
torchvision==0.15.2
|
7 |
+
opencv-python==4.7.0.72
|
8 |
+
grad-cam==1.4.6
|
9 |
+
numpy==1.24.3
|
10 |
+
matplotlib==3.7.1
|