File size: 9,834 Bytes
e5a1544 d4ac8c5 e5a1544 5f27df7 b37a8e6 5f27df7 b37a8e6 2553966 b37a8e6 5f27df7 e5a1544 d4ac8c5 e5a1544 b37a8e6 e5a1544 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 5f27df7 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 2553966 b37a8e6 e5a1544 2553966 e5a1544 5148899 e421b40 5148899 565e309 5148899 565e309 5148899 e421b40 5148899 565e309 5148899 565e309 e421b40 5148899 e5a1544 2553966 e5a1544 5148899 b37a8e6 2e20db1 5148899 e421b40 e5a1544 5148899 b37a8e6 2e20db1 5148899 e421b40 5148899 b37a8e6 2e20db1 5148899 e421b40 5148899 b37a8e6 2e20db1 5148899 e421b40 5148899 a46f53e 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Configuration: Adjust skip rate (lower = more frequent heavy updates)
# -----------------------------
SKIP_RATE = 5
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Fast Overlay Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
# Draw each landmark as a small circle
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# These functions compute the overlay info on the current frame.
# -----------------------------
def compute_posture_overlay(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
landmarks.append((int(lm.x * w), int(lm.y * h)))
)
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
for box, score in zip(detections["boxes"], detections["scores"]):
if score > threshold:
boxes.append(tuple(box.int().cpu().numpy()))
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
return boxes, text
def compute_faces_overlay(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
# -----------------------------
# Main Analysis Functions (run every frame)
# They update the cache every SKIP_RATE frames and always return a current frame with overlay.
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image) # raw RGB frame (as numpy array)
# Update overlay info every SKIP_RATE frames
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
# Draw cached landmarks on the current frame copy
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"Posture Analysis: {posture_cache['text']}"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
# For emotion, we don't overlay anything; just return the current frame.
return current_frame, f"Emotion Analysis: {emotion_cache['text']}"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
return output, f"Object Detection: {objects_cache['text']}"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"Face Detection: {faces_cache['text']}"
# -----------------------------
# Custom CSS for a High-Tech Look (White Font)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #ffffff;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #ffffff;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
"""
# -----------------------------
# Create Individual Interfaces for Each Analysis
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe.",
live=True
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER.",
live=True
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN.",
live=True
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe.",
live=True
)
# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|