Spaces:
Sleeping
Sleeping
File size: 1,374 Bytes
7e16596 ad81ace 7e16596 897683b ad81ace 897683b ad81ace 7e16596 897683b ad81ace 897683b ad81ace 7e16596 ad81ace 897683b ad81ace 897683b ad81ace 897683b 7e16596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import matplotlib.pyplot as plt
from sentiment import analyze_sentiment
# 📌 生成簡單的信心度條狀圖
def plot_confidence(score):
fig, ax = plt.subplots(figsize=(4, 1)) # 調整圖表尺寸
ax.barh(["信心度"], [score], color="blue") # 橫向條狀圖
ax.set_xlim([0, 1]) # 設定範圍為 0-1
ax.set_xticks([0, 0.25, 0.5, 0.75, 1]) # 設定刻度
ax.set_xlabel("信心度(百分比)") # 標題
return fig
# 📌 建立 Gradio 介面
def create_ui():
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown("# 🎯 多語言情緒分析 AI")
gr.Markdown("請輸入一段文字,AI 會分析其情緒,並提供信心度。")
text_input = gr.Textbox(lines=3, placeholder="請輸入文本...", label="輸入文本")
analyze_button = gr.Button("分析情緒")
result_output = gr.Markdown(label="分析結果")
plot_output = gr.Plot(label="信心度")
# 📌 綁定按鈕功能
def process_analysis(text):
result, confidence_score = analyze_sentiment(text) # 調用 API 進行分析
plot = plot_confidence(confidence_score) # 生成條狀圖
return result, plot
analyze_button.click(process_analysis, inputs=text_input, outputs=[result_output, plot_output])
return iface
|