dayuian commited on
Commit
897683b
·
verified ·
1 Parent(s): 282ce1a

Update ui.py

Browse files
Files changed (1) hide show
  1. ui.py +16 -41
ui.py CHANGED
@@ -2,59 +2,34 @@ import gradio as gr
2
  import matplotlib.pyplot as plt
3
  from sentiment import analyze_sentiment
4
 
5
- # 📌 定義可選擇的模型(顯示中文名稱)
6
- MODEL_OPTIONS = {
7
- "多語言推特情緒分析 (XLM-RoBERTa)": "cardiffnlp/twitter-xlm-roberta-base-sentiment",
8
- "多語言情緒分析 (BERT)": "nlptown/bert-base-multilingual-uncased-sentiment",
9
- "英語情緒分析 (DistilBERT)": "distilbert-base-uncased-finetuned-sst-2-english"
10
- }
11
-
12
- # 📌 生成信心度視覺化圖表
13
  def plot_confidence(score):
14
- fig, ax = plt.subplots()
15
- categories = ["", "中等", "", "極高"]
16
- levels = [0.3, 0.5, 0.75, 0.9]
17
-
18
- confidence_category = next((cat for cat, lvl in zip(categories, levels) if score < lvl), "極高")
19
-
20
- ax.bar(categories, levels, color=["red", "orange", "yellow", "green"])
21
- ax.set_ylim([0, 1])
22
- ax.set_title(f"信心度分析 ({confidence_category})")
23
  return fig
24
 
25
- # 📌 產生可下載的分析報告
26
- def generate_report(text, result, model_name):
27
- report = f"🔍 **分析報告**\n\n📝 **輸入內容**: {text}\n\n📊 **分析結果**:\n{result}\n\n🤖 **使用模型**: {model_name}"
28
- return report
29
-
30
  # 📌 建立 Gradio 介面
31
  def create_ui():
32
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
33
- gr.Markdown("# 🎯 多語言情緒分析 AI\n請輸入一段文字,選擇模型,AI 會分析其情緒。")
 
34
 
35
- with gr.Row():
36
- text_input = gr.Textbox(lines=3, placeholder="請輸入文本(支援多語言)...", label="輸入文本")
37
-
38
- with gr.Row():
39
- model_selector = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="多語言推特情緒分析 (XLM-RoBERTa)", label="選擇 AI 模型")
40
 
41
  analyze_button = gr.Button("分析情緒")
42
 
43
- with gr.Row():
44
- result_output = gr.Markdown(label="分析結果")
45
- plot_output = gr.Plot(label="信心度圖表")
46
-
47
- report_output = gr.File(label="下載報告")
48
 
49
  # 📌 綁定按鈕功能
50
- def process_analysis(text, model_name):
51
- model_id = MODEL_OPTIONS[model_name] # 轉換中文名稱為模型 ID
52
- result = analyze_sentiment(text, model_id) # 調用 API 進行分析
53
- confidence_score = float(result.split("信心度為**: ")[1].split("%")[0]) / 100
54
- plot = plot_confidence(confidence_score)
55
- report = generate_report(text, result, model_name)
56
- return result, plot, report
57
 
58
- analyze_button.click(process_analysis, inputs=[text_input, model_selector], outputs=[result_output, plot_output, report_output])
59
 
60
  return iface
 
2
  import matplotlib.pyplot as plt
3
  from sentiment import analyze_sentiment
4
 
5
+ # 📌 生成簡單的信心度條狀圖
 
 
 
 
 
 
 
6
  def plot_confidence(score):
7
+ fig, ax = plt.subplots(figsize=(4, 1)) # 調整圖表尺寸
8
+ ax.barh(["信心度"], [score], color="blue") # 橫向條狀圖
9
+ ax.set_xlim([0, 1]) # 設定範圍為 0-1
10
+ ax.set_xticks([0, 0.25, 0.5, 0.75, 1]) # 設定刻度
11
+ ax.set_xlabel("信心度(百分比)") # 標題
 
 
 
 
12
  return fig
13
 
 
 
 
 
 
14
  # 📌 建立 Gradio 介面
15
  def create_ui():
16
  with gr.Blocks(theme=gr.themes.Soft()) as iface:
17
+ gr.Markdown("# 🎯 多語言情緒分析 AI")
18
+ gr.Markdown("請輸入一段文字,AI 會分析其情緒,並提供信心度。")
19
 
20
+ text_input = gr.Textbox(lines=3, placeholder="請輸入文本...", label="輸入文本")
 
 
 
 
21
 
22
  analyze_button = gr.Button("分析情緒")
23
 
24
+ result_output = gr.Markdown(label="分析結果")
25
+ plot_output = gr.Plot(label="信心度")
 
 
 
26
 
27
  # 📌 綁定按鈕功能
28
+ def process_analysis(text):
29
+ result, confidence_score = analyze_sentiment(text) # 調用 API 進行分析
30
+ plot = plot_confidence(confidence_score) # 生成條狀圖
31
+ return result, plot
 
 
 
32
 
33
+ analyze_button.click(process_analysis, inputs=text_input, outputs=[result_output, plot_output])
34
 
35
  return iface