Spaces:
Running
Running
Update ui.py
Browse files
ui.py
CHANGED
@@ -1,44 +1,60 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from sentiment import analyze_sentiment
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
- **聯絡方式**: [[email protected]]
|
31 |
-
"""
|
32 |
-
|
33 |
-
# 建立 Gradio 介面
|
34 |
def create_ui():
|
35 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
36 |
-
gr.Markdown(
|
|
|
37 |
with gr.Row():
|
38 |
text_input = gr.Textbox(lines=3, placeholder="請輸入文本(支援多語言)...", label="輸入文本")
|
|
|
|
|
|
|
|
|
39 |
analyze_button = gr.Button("分析情緒")
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
return iface
|
|
|
1 |
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
from sentiment import analyze_sentiment
|
4 |
|
5 |
+
# 📌 定義可選擇的模型(顯示中文名稱)
|
6 |
+
MODEL_OPTIONS = {
|
7 |
+
"多語言推特情緒分析 (XLM-RoBERTa)": "cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
8 |
+
"多語言情緒分析 (BERT)": "nlptown/bert-base-multilingual-uncased-sentiment",
|
9 |
+
"英語情緒分析 (DistilBERT)": "distilbert-base-uncased-finetuned-sst-2-english"
|
10 |
+
}
|
11 |
+
|
12 |
+
# 📌 生成信心度視覺化圖表
|
13 |
+
def plot_confidence(score):
|
14 |
+
fig, ax = plt.subplots()
|
15 |
+
categories = ["低", "中等", "高", "極高"]
|
16 |
+
levels = [0.3, 0.5, 0.75, 0.9]
|
17 |
+
|
18 |
+
confidence_category = next((cat for cat, lvl in zip(categories, levels) if score < lvl), "極高")
|
19 |
+
|
20 |
+
ax.bar(categories, levels, color=["red", "orange", "yellow", "green"])
|
21 |
+
ax.set_ylim([0, 1])
|
22 |
+
ax.set_title(f"信心度分析 ({confidence_category})")
|
23 |
+
return fig
|
24 |
+
|
25 |
+
# 📌 產生可下載的分析報告
|
26 |
+
def generate_report(text, result, model_name):
|
27 |
+
report = f"🔍 **分析報告**\n\n📝 **輸入內容**: {text}\n\n📊 **分析結果**:\n{result}\n\n🤖 **使用模型**: {model_name}"
|
28 |
+
return report
|
29 |
+
|
30 |
+
# 📌 建立 Gradio 介面
|
|
|
|
|
|
|
|
|
31 |
def create_ui():
|
32 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
33 |
+
gr.Markdown("# 🎯 多語言情緒分析 AI\n請輸入一段文字,選擇模型,AI 會分析其情緒。")
|
34 |
+
|
35 |
with gr.Row():
|
36 |
text_input = gr.Textbox(lines=3, placeholder="請輸入文本(支援多語言)...", label="輸入文本")
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
model_selector = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="多語言推特情緒分析 (XLM-RoBERTa)", label="選擇 AI 模型")
|
40 |
+
|
41 |
analyze_button = gr.Button("分析情緒")
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
result_output = gr.Markdown(label="分析結果")
|
45 |
+
plot_output = gr.Plot(label="信心度圖表")
|
46 |
+
|
47 |
+
report_output = gr.File(label="下載報告")
|
48 |
+
|
49 |
+
# 📌 綁定按鈕功能
|
50 |
+
def process_analysis(text, model_name):
|
51 |
+
model_id = MODEL_OPTIONS[model_name] # 轉換中文名稱為模型 ID
|
52 |
+
result = analyze_sentiment(text, model_id) # 調用 API 進行分析
|
53 |
+
confidence_score = float(result.split("信心度為**: ")[1].split("%")[0]) / 100
|
54 |
+
plot = plot_confidence(confidence_score)
|
55 |
+
report = generate_report(text, result, model_name)
|
56 |
+
return result, plot, report
|
57 |
+
|
58 |
+
analyze_button.click(process_analysis, inputs=[text_input, model_selector], outputs=[result_output, plot_output, report_output])
|
59 |
|
60 |
return iface
|