Spaces:
Sleeping
Sleeping
File size: 1,051 Bytes
c2aeaf4 e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 4eddfdb c2aeaf4 e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 275d15c e65b5c7 c2aeaf4 e65b5c7 c2aeaf4 275d15c e65b5c7 c2aeaf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import re
# 可用模型清單
MODEL_LIST = [
"gpt2",
"EleutherAI/pythia-410m"
]
# 模型快取,避免每次重新載入
MODEL_CACHE = {}
# 加載模型
def load_model(model_name):
if model_name not in MODEL_CACHE:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
MODEL_CACHE[model_name] = (tokenizer, model)
return MODEL_CACHE[model_name]
# 生成 AI 例句
def generate_sentence(word, model_name):
tokenizer, model = load_model(model_name)
prompt = f"Example sentence using '{word}':"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 清理生成句子
sentence = sentence.split(":")[-1].strip()
sentence = re.sub(r'[^a-zA-Z0-9, .!?]', '', sentence)
if not sentence.endswith("."):
sentence += "."
return sentence
|