Spaces:
Sleeping
Sleeping
Update ai_sentence.py
Browse files- ai_sentence.py +14 -6
ai_sentence.py
CHANGED
@@ -3,22 +3,30 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
MODEL_LIST = [
|
4 |
"EleutherAI/pythia-410m",
|
5 |
"EleutherAI/pythia-1b",
|
6 |
-
"
|
7 |
]
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
def load_model(model_name):
|
12 |
-
if model_name not in
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
-
|
16 |
-
return
|
|
|
17 |
|
18 |
def generate_sentence(word, model_name):
|
19 |
tokenizer, model = load_model(model_name)
|
20 |
-
|
|
|
21 |
inputs = tokenizer(prompt, return_tensors="pt")
|
22 |
outputs = model.generate(**inputs, max_new_tokens=30)
|
23 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
24 |
return sentence
|
|
|
3 |
MODEL_LIST = [
|
4 |
"EleutherAI/pythia-410m",
|
5 |
"EleutherAI/pythia-1b",
|
6 |
+
"gpt2"
|
7 |
]
|
8 |
|
9 |
+
model_cache = {} # 緩存模型
|
10 |
+
|
11 |
|
12 |
def load_model(model_name):
|
13 |
+
if model_name not in model_cache:
|
14 |
+
print(f"⏳ 正在載入模型:{model_name}")
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
+
model_cache[model_name] = (tokenizer, model)
|
18 |
+
return model_cache[model_name]
|
19 |
+
|
20 |
|
21 |
def generate_sentence(word, model_name):
|
22 |
tokenizer, model = load_model(model_name)
|
23 |
+
|
24 |
+
prompt = f"A simple English sentence using the word '{word}' suitable for beginners. Output only the sentence."
|
25 |
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
outputs = model.generate(**inputs, max_new_tokens=30)
|
27 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
# 清理句子(可以根據需求調整)
|
30 |
+
sentence = sentence.split(".")[0].strip() + "."
|
31 |
+
|
32 |
return sentence
|