Spaces:
Sleeping
Sleeping
Update ai_sentence.py
Browse files- ai_sentence.py +18 -14
ai_sentence.py
CHANGED
@@ -1,32 +1,36 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
2 |
|
|
|
3 |
MODEL_LIST = [
|
4 |
"EleutherAI/pythia-410m",
|
5 |
-
"
|
6 |
-
"
|
7 |
]
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
|
|
12 |
def load_model(model_name):
|
13 |
-
if model_name not in
|
14 |
-
print(f"⏳ 正在載入模型:{model_name}")
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
-
|
18 |
-
return
|
19 |
-
|
20 |
|
|
|
21 |
def generate_sentence(word, model_name):
|
22 |
tokenizer, model = load_model(model_name)
|
23 |
|
24 |
-
prompt = f"
|
25 |
inputs = tokenizer(prompt, return_tensors="pt")
|
26 |
-
outputs = model.generate(**inputs, max_new_tokens=
|
27 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
|
29 |
-
#
|
30 |
-
sentence = sentence.split("
|
31 |
-
|
|
|
|
|
32 |
return sentence
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import re
|
3 |
|
4 |
+
# 可用模型清單
|
5 |
MODEL_LIST = [
|
6 |
"EleutherAI/pythia-410m",
|
7 |
+
"gpt2",
|
8 |
+
"mistralai/Mistral-7B-Instruct"
|
9 |
]
|
10 |
|
11 |
+
# 模型快取,避免每次重新載入
|
12 |
+
MODEL_CACHE = {}
|
13 |
|
14 |
+
# 加載模型
|
15 |
def load_model(model_name):
|
16 |
+
if model_name not in MODEL_CACHE:
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
19 |
+
MODEL_CACHE[model_name] = (tokenizer, model)
|
20 |
+
return MODEL_CACHE[model_name]
|
|
|
21 |
|
22 |
+
# 生成 AI 例句
|
23 |
def generate_sentence(word, model_name):
|
24 |
tokenizer, model = load_model(model_name)
|
25 |
|
26 |
+
prompt = f"Example sentence using '{word}':"
|
27 |
inputs = tokenizer(prompt, return_tensors="pt")
|
28 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
29 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
|
31 |
+
# 清理生成句子
|
32 |
+
sentence = sentence.split(":")[-1].strip()
|
33 |
+
sentence = re.sub(r'[^a-zA-Z0-9, .!?]', '', sentence)
|
34 |
+
if not sentence.endswith("."):
|
35 |
+
sentence += "."
|
36 |
return sentence
|