|
|
|
|
|
|
|
|
|
|
|
|
|
"""Loss functions.""" |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import dnnlib.tflib as tflib |
|
from dnnlib.tflib.autosummary import autosummary |
|
|
|
|
|
|
|
|
|
|
|
def G_logistic(G, D, opt, training_set, minibatch_size): |
|
_ = opt |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
labels = training_set.get_random_labels_tf(minibatch_size) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
loss = -tf.nn.softplus(fake_scores_out) |
|
return loss, None |
|
|
|
def G_logistic_ns(G, D, opt, training_set, minibatch_size): |
|
_ = opt |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
labels = training_set.get_random_labels_tf(minibatch_size) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
loss = tf.nn.softplus(-fake_scores_out) |
|
return loss, None |
|
|
|
def D_logistic(G, D, opt, training_set, minibatch_size, reals, labels): |
|
_ = opt, training_set |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
real_scores_out = D.get_output_for(reals, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
real_scores_out = autosummary('Loss/scores/real', real_scores_out) |
|
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) |
|
loss = tf.nn.softplus(fake_scores_out) |
|
loss += tf.nn.softplus(-real_scores_out) |
|
return loss, None |
|
|
|
|
|
|
|
|
|
|
|
def D_logistic_r1(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0): |
|
_ = opt, training_set |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
real_scores_out = D.get_output_for(reals, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
real_scores_out = autosummary('Loss/scores/real', real_scores_out) |
|
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) |
|
loss = tf.nn.softplus(fake_scores_out) |
|
loss += tf.nn.softplus(-real_scores_out) |
|
|
|
with tf.name_scope('GradientPenalty'): |
|
real_grads = tf.gradients(tf.reduce_sum(real_scores_out), [reals])[0] |
|
gradient_penalty = tf.reduce_sum(tf.square(real_grads), axis=[1,2,3]) |
|
gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty) |
|
reg = gradient_penalty * (gamma * 0.5) |
|
return loss, reg |
|
|
|
def D_logistic_r2(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0): |
|
_ = opt, training_set |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
real_scores_out = D.get_output_for(reals, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
real_scores_out = autosummary('Loss/scores/real', real_scores_out) |
|
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) |
|
loss = tf.nn.softplus(fake_scores_out) |
|
loss += tf.nn.softplus(-real_scores_out) |
|
|
|
with tf.name_scope('GradientPenalty'): |
|
fake_grads = tf.gradients(tf.reduce_sum(fake_scores_out), [fake_images_out])[0] |
|
gradient_penalty = tf.reduce_sum(tf.square(fake_grads), axis=[1,2,3]) |
|
gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty) |
|
reg = gradient_penalty * (gamma * 0.5) |
|
return loss, reg |
|
|
|
|
|
|
|
|
|
|
|
def G_wgan(G, D, opt, training_set, minibatch_size): |
|
_ = opt |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
labels = training_set.get_random_labels_tf(minibatch_size) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
loss = -fake_scores_out |
|
return loss, None |
|
|
|
def D_wgan(G, D, opt, training_set, minibatch_size, reals, labels, wgan_epsilon=0.001): |
|
_ = opt, training_set |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
real_scores_out = D.get_output_for(reals, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
real_scores_out = autosummary('Loss/scores/real', real_scores_out) |
|
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) |
|
loss = fake_scores_out - real_scores_out |
|
with tf.name_scope('EpsilonPenalty'): |
|
epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) |
|
loss += epsilon_penalty * wgan_epsilon |
|
return loss, None |
|
|
|
|
|
|
|
|
|
|
|
def D_wgan_gp(G, D, opt, training_set, minibatch_size, reals, labels, wgan_lambda=10.0, wgan_epsilon=0.001, wgan_target=1.0): |
|
_ = opt, training_set |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
fake_images_out = G.get_output_for(latents, labels, is_training=True) |
|
real_scores_out = D.get_output_for(reals, labels, is_training=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
real_scores_out = autosummary('Loss/scores/real', real_scores_out) |
|
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) |
|
loss = fake_scores_out - real_scores_out |
|
with tf.name_scope('EpsilonPenalty'): |
|
epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) |
|
loss += epsilon_penalty * wgan_epsilon |
|
|
|
with tf.name_scope('GradientPenalty'): |
|
mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype) |
|
mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors) |
|
mixed_scores_out = D.get_output_for(mixed_images_out, labels, is_training=True) |
|
mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out) |
|
mixed_grads = tf.gradients(tf.reduce_sum(mixed_scores_out), [mixed_images_out])[0] |
|
mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3])) |
|
mixed_norms = autosummary('Loss/mixed_norms', mixed_norms) |
|
gradient_penalty = tf.square(mixed_norms - wgan_target) |
|
reg = gradient_penalty * (wgan_lambda / (wgan_target**2)) |
|
return loss, reg |
|
|
|
|
|
|
|
|
|
|
|
def G_logistic_ns_pathreg(G, D, opt, training_set, minibatch_size, pl_minibatch_shrink=2, pl_decay=0.01, pl_weight=2.0): |
|
_ = opt |
|
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) |
|
labels = training_set.get_random_labels_tf(minibatch_size) |
|
fake_images_out, fake_dlatents_out = G.get_output_for(latents, labels, is_training=True, return_dlatents=True) |
|
fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) |
|
loss = tf.nn.softplus(-fake_scores_out) |
|
|
|
|
|
with tf.name_scope('PathReg'): |
|
|
|
|
|
if pl_minibatch_shrink > 1: |
|
pl_minibatch = minibatch_size // pl_minibatch_shrink |
|
pl_latents = tf.random_normal([pl_minibatch] + G.input_shapes[0][1:]) |
|
pl_labels = training_set.get_random_labels_tf(pl_minibatch) |
|
fake_images_out, fake_dlatents_out = G.get_output_for(pl_latents, pl_labels, is_training=True, return_dlatents=True) |
|
|
|
|
|
pl_noise = tf.random_normal(tf.shape(fake_images_out)) / np.sqrt(np.prod(G.output_shape[2:])) |
|
pl_grads = tf.gradients(tf.reduce_sum(fake_images_out * pl_noise), [fake_dlatents_out])[0] |
|
pl_lengths = tf.sqrt(tf.reduce_mean(tf.reduce_sum(tf.square(pl_grads), axis=2), axis=1)) |
|
pl_lengths = autosummary('Loss/pl_lengths', pl_lengths) |
|
|
|
|
|
with tf.control_dependencies(None): |
|
pl_mean_var = tf.Variable(name='pl_mean', trainable=False, initial_value=0.0, dtype=tf.float32) |
|
pl_mean = pl_mean_var + pl_decay * (tf.reduce_mean(pl_lengths) - pl_mean_var) |
|
pl_update = tf.assign(pl_mean_var, pl_mean) |
|
|
|
|
|
with tf.control_dependencies([pl_update]): |
|
pl_penalty = tf.square(pl_lengths - pl_mean) |
|
pl_penalty = autosummary('Loss/pl_penalty', pl_penalty) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reg = pl_penalty * pl_weight |
|
|
|
return loss, reg |
|
|
|
|
|
|