# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Loss functions.""" import numpy as np import tensorflow as tf import dnnlib.tflib as tflib from dnnlib.tflib.autosummary import autosummary #---------------------------------------------------------------------------- # Logistic loss from the paper # "Generative Adversarial Nets", Goodfellow et al. 2014 def G_logistic(G, D, opt, training_set, minibatch_size): _ = opt latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) labels = training_set.get_random_labels_tf(minibatch_size) fake_images_out = G.get_output_for(latents, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) loss = -tf.nn.softplus(fake_scores_out) # log(1-sigmoid(fake_scores_out)) # pylint: disable=invalid-unary-operand-type return loss, None def G_logistic_ns(G, D, opt, training_set, minibatch_size): _ = opt latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) labels = training_set.get_random_labels_tf(minibatch_size) fake_images_out = G.get_output_for(latents, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out)) return loss, None def D_logistic(G, D, opt, training_set, minibatch_size, reals, labels): _ = opt, training_set latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out = D.get_output_for(reals, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) real_scores_out = autosummary('Loss/scores/real', real_scores_out) fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out)) loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type return loss, None #---------------------------------------------------------------------------- # R1 and R2 regularizers from the paper # "Which Training Methods for GANs do actually Converge?", Mescheder et al. 2018 def D_logistic_r1(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0): _ = opt, training_set latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out = D.get_output_for(reals, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) real_scores_out = autosummary('Loss/scores/real', real_scores_out) fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out)) loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type with tf.name_scope('GradientPenalty'): real_grads = tf.gradients(tf.reduce_sum(real_scores_out), [reals])[0] gradient_penalty = tf.reduce_sum(tf.square(real_grads), axis=[1,2,3]) gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty) reg = gradient_penalty * (gamma * 0.5) return loss, reg def D_logistic_r2(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0): _ = opt, training_set latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out = D.get_output_for(reals, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) real_scores_out = autosummary('Loss/scores/real', real_scores_out) fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out)) loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type with tf.name_scope('GradientPenalty'): fake_grads = tf.gradients(tf.reduce_sum(fake_scores_out), [fake_images_out])[0] gradient_penalty = tf.reduce_sum(tf.square(fake_grads), axis=[1,2,3]) gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty) reg = gradient_penalty * (gamma * 0.5) return loss, reg #---------------------------------------------------------------------------- # WGAN loss from the paper # "Wasserstein Generative Adversarial Networks", Arjovsky et al. 2017 def G_wgan(G, D, opt, training_set, minibatch_size): _ = opt latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) labels = training_set.get_random_labels_tf(minibatch_size) fake_images_out = G.get_output_for(latents, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) loss = -fake_scores_out return loss, None def D_wgan(G, D, opt, training_set, minibatch_size, reals, labels, wgan_epsilon=0.001): _ = opt, training_set latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out = D.get_output_for(reals, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) real_scores_out = autosummary('Loss/scores/real', real_scores_out) fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) loss = fake_scores_out - real_scores_out with tf.name_scope('EpsilonPenalty'): epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) loss += epsilon_penalty * wgan_epsilon return loss, None #---------------------------------------------------------------------------- # WGAN-GP loss from the paper # "Improved Training of Wasserstein GANs", Gulrajani et al. 2017 def D_wgan_gp(G, D, opt, training_set, minibatch_size, reals, labels, wgan_lambda=10.0, wgan_epsilon=0.001, wgan_target=1.0): _ = opt, training_set latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) fake_images_out = G.get_output_for(latents, labels, is_training=True) real_scores_out = D.get_output_for(reals, labels, is_training=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) real_scores_out = autosummary('Loss/scores/real', real_scores_out) fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) loss = fake_scores_out - real_scores_out with tf.name_scope('EpsilonPenalty'): epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) loss += epsilon_penalty * wgan_epsilon with tf.name_scope('GradientPenalty'): mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype) mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors) mixed_scores_out = D.get_output_for(mixed_images_out, labels, is_training=True) mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out) mixed_grads = tf.gradients(tf.reduce_sum(mixed_scores_out), [mixed_images_out])[0] mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3])) mixed_norms = autosummary('Loss/mixed_norms', mixed_norms) gradient_penalty = tf.square(mixed_norms - wgan_target) reg = gradient_penalty * (wgan_lambda / (wgan_target**2)) return loss, reg #---------------------------------------------------------------------------- # Non-saturating logistic loss with path length regularizer from the paper # "Analyzing and Improving the Image Quality of StyleGAN", Karras et al. 2019 def G_logistic_ns_pathreg(G, D, opt, training_set, minibatch_size, pl_minibatch_shrink=2, pl_decay=0.01, pl_weight=2.0): _ = opt latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) labels = training_set.get_random_labels_tf(minibatch_size) fake_images_out, fake_dlatents_out = G.get_output_for(latents, labels, is_training=True, return_dlatents=True) fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True) loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out)) # Path length regularization. with tf.name_scope('PathReg'): # Evaluate the regularization term using a smaller minibatch to conserve memory. if pl_minibatch_shrink > 1: pl_minibatch = minibatch_size // pl_minibatch_shrink pl_latents = tf.random_normal([pl_minibatch] + G.input_shapes[0][1:]) pl_labels = training_set.get_random_labels_tf(pl_minibatch) fake_images_out, fake_dlatents_out = G.get_output_for(pl_latents, pl_labels, is_training=True, return_dlatents=True) # Compute |J*y|. pl_noise = tf.random_normal(tf.shape(fake_images_out)) / np.sqrt(np.prod(G.output_shape[2:])) pl_grads = tf.gradients(tf.reduce_sum(fake_images_out * pl_noise), [fake_dlatents_out])[0] pl_lengths = tf.sqrt(tf.reduce_mean(tf.reduce_sum(tf.square(pl_grads), axis=2), axis=1)) pl_lengths = autosummary('Loss/pl_lengths', pl_lengths) # Track exponential moving average of |J*y|. with tf.control_dependencies(None): pl_mean_var = tf.Variable(name='pl_mean', trainable=False, initial_value=0.0, dtype=tf.float32) pl_mean = pl_mean_var + pl_decay * (tf.reduce_mean(pl_lengths) - pl_mean_var) pl_update = tf.assign(pl_mean_var, pl_mean) # Calculate (|J*y|-a)^2. with tf.control_dependencies([pl_update]): pl_penalty = tf.square(pl_lengths - pl_mean) pl_penalty = autosummary('Loss/pl_penalty', pl_penalty) # Apply weight. # # Note: The division in pl_noise decreases the weight by num_pixels, and the reduce_mean # in pl_lengths decreases it by num_affine_layers. The effective weight then becomes: # # gamma_pl = pl_weight / num_pixels / num_affine_layers # = 2 / (r^2) / (log2(r) * 2 - 2) # = 1 / (r^2 * (log2(r) - 1)) # = ln(2) / (r^2 * (ln(r) - ln(2)) # reg = pl_penalty * pl_weight return loss, reg #----------------------------------------------------------------------------