File size: 10,731 Bytes
8c212a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html

"""Loss functions."""

import numpy as np
import tensorflow as tf
import dnnlib.tflib as tflib
from dnnlib.tflib.autosummary import autosummary

#----------------------------------------------------------------------------
# Logistic loss from the paper
# "Generative Adversarial Nets", Goodfellow et al. 2014

def G_logistic(G, D, opt, training_set, minibatch_size):
    _ = opt
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    labels = training_set.get_random_labels_tf(minibatch_size)
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    loss = -tf.nn.softplus(fake_scores_out) # log(1-sigmoid(fake_scores_out)) # pylint: disable=invalid-unary-operand-type
    return loss, None

def G_logistic_ns(G, D, opt, training_set, minibatch_size):
    _ = opt
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    labels = training_set.get_random_labels_tf(minibatch_size)
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out))
    return loss, None

def D_logistic(G, D, opt, training_set, minibatch_size, reals, labels):
    _ = opt, training_set
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    real_scores_out = D.get_output_for(reals, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    real_scores_out = autosummary('Loss/scores/real', real_scores_out)
    fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
    loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out))
    loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type
    return loss, None

#----------------------------------------------------------------------------
# R1 and R2 regularizers from the paper
# "Which Training Methods for GANs do actually Converge?", Mescheder et al. 2018

def D_logistic_r1(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0):
    _ = opt, training_set
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    real_scores_out = D.get_output_for(reals, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    real_scores_out = autosummary('Loss/scores/real', real_scores_out)
    fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
    loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out))
    loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type

    with tf.name_scope('GradientPenalty'):
        real_grads = tf.gradients(tf.reduce_sum(real_scores_out), [reals])[0]
        gradient_penalty = tf.reduce_sum(tf.square(real_grads), axis=[1,2,3])
        gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty)
        reg = gradient_penalty * (gamma * 0.5)
    return loss, reg

def D_logistic_r2(G, D, opt, training_set, minibatch_size, reals, labels, gamma=10.0):
    _ = opt, training_set
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    real_scores_out = D.get_output_for(reals, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    real_scores_out = autosummary('Loss/scores/real', real_scores_out)
    fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
    loss = tf.nn.softplus(fake_scores_out) # -log(1-sigmoid(fake_scores_out))
    loss += tf.nn.softplus(-real_scores_out) # -log(sigmoid(real_scores_out)) # pylint: disable=invalid-unary-operand-type

    with tf.name_scope('GradientPenalty'):
        fake_grads = tf.gradients(tf.reduce_sum(fake_scores_out), [fake_images_out])[0]
        gradient_penalty = tf.reduce_sum(tf.square(fake_grads), axis=[1,2,3])
        gradient_penalty = autosummary('Loss/gradient_penalty', gradient_penalty)
        reg = gradient_penalty * (gamma * 0.5)
    return loss, reg

#----------------------------------------------------------------------------
# WGAN loss from the paper
# "Wasserstein Generative Adversarial Networks", Arjovsky et al. 2017

def G_wgan(G, D, opt, training_set, minibatch_size):
    _ = opt
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    labels = training_set.get_random_labels_tf(minibatch_size)
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    loss = -fake_scores_out
    return loss, None

def D_wgan(G, D, opt, training_set, minibatch_size, reals, labels, wgan_epsilon=0.001):
    _ = opt, training_set
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    real_scores_out = D.get_output_for(reals, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    real_scores_out = autosummary('Loss/scores/real', real_scores_out)
    fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
    loss = fake_scores_out - real_scores_out
    with tf.name_scope('EpsilonPenalty'):
        epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out))
        loss += epsilon_penalty * wgan_epsilon
    return loss, None

#----------------------------------------------------------------------------
# WGAN-GP loss from the paper
# "Improved Training of Wasserstein GANs", Gulrajani et al. 2017

def D_wgan_gp(G, D, opt, training_set, minibatch_size, reals, labels, wgan_lambda=10.0, wgan_epsilon=0.001, wgan_target=1.0):
    _ = opt, training_set
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    fake_images_out = G.get_output_for(latents, labels, is_training=True)
    real_scores_out = D.get_output_for(reals, labels, is_training=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    real_scores_out = autosummary('Loss/scores/real', real_scores_out)
    fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
    loss = fake_scores_out - real_scores_out
    with tf.name_scope('EpsilonPenalty'):
        epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out))
    loss += epsilon_penalty * wgan_epsilon

    with tf.name_scope('GradientPenalty'):
        mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype)
        mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors)
        mixed_scores_out = D.get_output_for(mixed_images_out, labels, is_training=True)
        mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out)
        mixed_grads = tf.gradients(tf.reduce_sum(mixed_scores_out), [mixed_images_out])[0]
        mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3]))
        mixed_norms = autosummary('Loss/mixed_norms', mixed_norms)
        gradient_penalty = tf.square(mixed_norms - wgan_target)
        reg = gradient_penalty * (wgan_lambda / (wgan_target**2))
    return loss, reg

#----------------------------------------------------------------------------
# Non-saturating logistic loss with path length regularizer from the paper
# "Analyzing and Improving the Image Quality of StyleGAN", Karras et al. 2019

def G_logistic_ns_pathreg(G, D, opt, training_set, minibatch_size, pl_minibatch_shrink=2, pl_decay=0.01, pl_weight=2.0):
    _ = opt
    latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
    labels = training_set.get_random_labels_tf(minibatch_size)
    fake_images_out, fake_dlatents_out = G.get_output_for(latents, labels, is_training=True, return_dlatents=True)
    fake_scores_out = D.get_output_for(fake_images_out, labels, is_training=True)
    loss = tf.nn.softplus(-fake_scores_out) # -log(sigmoid(fake_scores_out))

    # Path length regularization.
    with tf.name_scope('PathReg'):

        # Evaluate the regularization term using a smaller minibatch to conserve memory.
        if pl_minibatch_shrink > 1:
            pl_minibatch = minibatch_size // pl_minibatch_shrink
            pl_latents = tf.random_normal([pl_minibatch] + G.input_shapes[0][1:])
            pl_labels = training_set.get_random_labels_tf(pl_minibatch)
            fake_images_out, fake_dlatents_out = G.get_output_for(pl_latents, pl_labels, is_training=True, return_dlatents=True)

        # Compute |J*y|.
        pl_noise = tf.random_normal(tf.shape(fake_images_out)) / np.sqrt(np.prod(G.output_shape[2:]))
        pl_grads = tf.gradients(tf.reduce_sum(fake_images_out * pl_noise), [fake_dlatents_out])[0]
        pl_lengths = tf.sqrt(tf.reduce_mean(tf.reduce_sum(tf.square(pl_grads), axis=2), axis=1))
        pl_lengths = autosummary('Loss/pl_lengths', pl_lengths)

        # Track exponential moving average of |J*y|.
        with tf.control_dependencies(None):
            pl_mean_var = tf.Variable(name='pl_mean', trainable=False, initial_value=0.0, dtype=tf.float32)
        pl_mean = pl_mean_var + pl_decay * (tf.reduce_mean(pl_lengths) - pl_mean_var)
        pl_update = tf.assign(pl_mean_var, pl_mean)

        # Calculate (|J*y|-a)^2.
        with tf.control_dependencies([pl_update]):
            pl_penalty = tf.square(pl_lengths - pl_mean)
            pl_penalty = autosummary('Loss/pl_penalty', pl_penalty)

        # Apply weight.
        #
        # Note: The division in pl_noise decreases the weight by num_pixels, and the reduce_mean
        # in pl_lengths decreases it by num_affine_layers. The effective weight then becomes:
        #
        # gamma_pl = pl_weight / num_pixels / num_affine_layers
        # = 2 / (r^2) / (log2(r) * 2 - 2)
        # = 1 / (r^2 * (log2(r) - 1))
        # = ln(2) / (r^2 * (ln(r) - ln(2))
        #
        reg = pl_penalty * pl_weight

    return loss, reg

#----------------------------------------------------------------------------