Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Initialize Hugging Face Inference API client | |
hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load the second model | |
local_model_name = "codewithdark/latent-recurrent-depth-lm" | |
tokenizer = AutoTokenizer.from_pretrained(local_model_name) | |
model = AutoModelForCausalLM.from_pretrained(local_model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def generate_response( | |
message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
if model_choice == "Zephyr-7B (API)": | |
response = "" | |
for message in hf_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
else: | |
input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) | |
output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
yield response | |
demo = gr.ChatInterface( | |
generate_response, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |