Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Initialize Hugging Face Inference API client | |
| hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # Load the second model | |
| local_model_name = "codewithdark/latent-recurrent-depth-lm" | |
| tokenizer = AutoTokenizer.from_pretrained(local_model_name) | |
| model = AutoModelForCausalLM.from_pretrained(local_model_name) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| def generate_response( | |
| message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| if model_choice == "Zephyr-7B (API)": | |
| response = "" | |
| for message in hf_client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| else: | |
| input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) | |
| output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| yield response | |
| demo = gr.ChatInterface( | |
| generate_response, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |