import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Initialize Hugging Face Inference API client hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load the second model local_model_name = "codewithdark/latent-recurrent-depth-lm" tokenizer = AutoTokenizer.from_pretrained(local_model_name) model = AutoModelForCausalLM.from_pretrained(local_model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def generate_response( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) if model_choice == "Zephyr-7B (API)": response = "" for message in hf_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response else: input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p) response = tokenizer.decode(output[0], skip_special_tokens=True) yield response demo = gr.ChatInterface( generate_response, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"), ], ) if __name__ == "__main__": demo.launch()