codewithdark commited on
Commit
77153c2
·
verified ·
1 Parent(s): 018cbd4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -37
app.py CHANGED
@@ -1,19 +1,20 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
@@ -22,43 +23,37 @@ def respond(
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
 
 
 
 
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ import torch
5
 
6
+ # Initialize Hugging Face Inference API client
7
+ hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
8
 
9
+ # Load the second model
10
+ local_model_name = "codewithdark/latent-recurrent-depth-lm"
11
+ tokenizer = AutoTokenizer.from_pretrained(local_model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(local_model_name)
13
+ device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ model.to(device)
15
 
16
+ def generate_response(
17
+ message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice
 
 
 
 
 
18
  ):
19
  messages = [{"role": "system", "content": system_message}]
20
 
 
23
  messages.append({"role": "user", "content": val[0]})
24
  if val[1]:
25
  messages.append({"role": "assistant", "content": val[1]})
26
+
27
  messages.append({"role": "user", "content": message})
28
 
29
+ if model_choice == "Zephyr-7B (API)":
30
+ response = ""
31
+ for message in hf_client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+ response += token
40
+ yield response
41
+ else:
42
+ input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
43
+ output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p)
44
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
45
  yield response
46
 
 
 
 
 
47
  demo = gr.ChatInterface(
48
+ generate_response,
49
  additional_inputs=[
50
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
54
+ gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"),
 
 
 
 
 
55
  ],
56
  )
57
 
 
58
  if __name__ == "__main__":
59
  demo.launch()