Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
@@ -22,43 +23,37 @@ def respond(
|
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
|
6 |
+
# Initialize Hugging Face Inference API client
|
7 |
+
hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
8 |
|
9 |
+
# Load the second model
|
10 |
+
local_model_name = "codewithdark/latent-recurrent-depth-lm"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(local_model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(local_model_name)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
|
16 |
+
def generate_response(
|
17 |
+
message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice
|
|
|
|
|
|
|
|
|
|
|
18 |
):
|
19 |
messages = [{"role": "system", "content": system_message}]
|
20 |
|
|
|
23 |
messages.append({"role": "user", "content": val[0]})
|
24 |
if val[1]:
|
25 |
messages.append({"role": "assistant", "content": val[1]})
|
26 |
+
|
27 |
messages.append({"role": "user", "content": message})
|
28 |
|
29 |
+
if model_choice == "Zephyr-7B (API)":
|
30 |
+
response = ""
|
31 |
+
for message in hf_client.chat_completion(
|
32 |
+
messages,
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
stream=True,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
):
|
38 |
+
token = message.choices[0].delta.content
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
+
else:
|
42 |
+
input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
|
43 |
+
output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p)
|
44 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
yield response
|
46 |
|
|
|
|
|
|
|
|
|
47 |
demo = gr.ChatInterface(
|
48 |
+
generate_response,
|
49 |
additional_inputs=[
|
50 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
51 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
54 |
+
gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"),
|
|
|
|
|
|
|
|
|
|
|
55 |
],
|
56 |
)
|
57 |
|
|
|
58 |
if __name__ == "__main__":
|
59 |
demo.launch()
|